snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LinearSVR(BaseTransformer):
57
58
  r"""Linear Support Vector Regression
58
59
  For more details on this class, see [sklearn.svm.LinearSVR]
@@ -60,6 +61,51 @@ class LinearSVR(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  epsilon: float, default=0.0
64
110
  Epsilon parameter in the epsilon-insensitive loss function. Note
65
111
  that the value of this parameter depends on the scale of the target
@@ -113,35 +159,6 @@ class LinearSVR(BaseTransformer):
113
159
 
114
160
  max_iter: int, default=1000
115
161
  The maximum number of iterations to be run.
116
-
117
- input_cols: Optional[Union[str, List[str]]]
118
- A string or list of strings representing column names that contain features.
119
- If this parameter is not specified, all columns in the input DataFrame except
120
- the columns specified by label_cols and sample_weight_col parameters are
121
- considered input columns.
122
-
123
- label_cols: Optional[Union[str, List[str]]]
124
- A string or list of strings representing column names that contain labels.
125
- This is a required param for estimators, as there is no way to infer these
126
- columns. If this parameter is not specified, then object is fitted without
127
- labels (like a transformer).
128
-
129
- output_cols: Optional[Union[str, List[str]]]
130
- A string or list of strings representing column names that will store the
131
- output of predict and transform operations. The length of output_cols must
132
- match the expected number of output columns from the specific estimator or
133
- transformer class used.
134
- If this parameter is not specified, output column names are derived by
135
- adding an OUTPUT_ prefix to the label column names. These inferred output
136
- column names work for estimator's predict() method, but output_cols must
137
- be set explicitly for transformers.
138
-
139
- sample_weight_col: Optional[str]
140
- A string representing the column name containing the sample weights.
141
- This argument is only required when working with weighted datasets.
142
-
143
- drop_input_cols: Optional[bool], default=False
144
- If set, the response of predict(), transform() methods will not contain input columns.
145
162
  """
146
163
 
147
164
  def __init__( # type: ignore[no-untyped-def]
@@ -160,6 +177,7 @@ class LinearSVR(BaseTransformer):
160
177
  input_cols: Optional[Union[str, Iterable[str]]] = None,
161
178
  output_cols: Optional[Union[str, Iterable[str]]] = None,
162
179
  label_cols: Optional[Union[str, Iterable[str]]] = None,
180
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
163
181
  drop_input_cols: Optional[bool] = False,
164
182
  sample_weight_col: Optional[str] = None,
165
183
  ) -> None:
@@ -168,9 +186,10 @@ class LinearSVR(BaseTransformer):
168
186
  self.set_input_cols(input_cols)
169
187
  self.set_output_cols(output_cols)
170
188
  self.set_label_cols(label_cols)
189
+ self.set_passthrough_cols(passthrough_cols)
171
190
  self.set_drop_input_cols(drop_input_cols)
172
191
  self.set_sample_weight_col(sample_weight_col)
173
- deps = set(SklearnWrapperProvider().dependencies)
192
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
174
193
 
175
194
  self._deps = list(deps)
176
195
 
@@ -188,13 +207,14 @@ class LinearSVR(BaseTransformer):
188
207
  args=init_args,
189
208
  klass=sklearn.svm.LinearSVR
190
209
  )
191
- self._sklearn_object = sklearn.svm.LinearSVR(
210
+ self._sklearn_object: Any = sklearn.svm.LinearSVR(
192
211
  **cleaned_up_init_args,
193
212
  )
194
213
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
195
214
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
196
215
  self._snowpark_cols: Optional[List[str]] = self.input_cols
197
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
216
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
217
+ self._autogenerated = True
198
218
 
199
219
  def _get_rand_id(self) -> str:
200
220
  """
@@ -205,24 +225,6 @@ class LinearSVR(BaseTransformer):
205
225
  """
206
226
  return str(uuid4()).replace("-", "_").upper()
207
227
 
208
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
209
- """
210
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
211
-
212
- Args:
213
- dataset: Input dataset.
214
- """
215
- if not self.input_cols:
216
- cols = [
217
- c for c in dataset.columns
218
- if c not in self.get_label_cols() and c != self.sample_weight_col
219
- ]
220
- self.set_input_cols(input_cols=cols)
221
-
222
- if not self.output_cols:
223
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
224
- self.set_output_cols(output_cols=cols)
225
-
226
228
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LinearSVR":
227
229
  """
228
230
  Input columns setter.
@@ -268,54 +270,48 @@ class LinearSVR(BaseTransformer):
268
270
  self
269
271
  """
270
272
  self._infer_input_output_cols(dataset)
271
- if isinstance(dataset, pd.DataFrame):
272
- assert self._sklearn_object is not None # keep mypy happy
273
- self._sklearn_object = self._handlers.fit_pandas(
274
- dataset,
275
- self._sklearn_object,
276
- self.input_cols,
277
- self.label_cols,
278
- self.sample_weight_col
279
- )
280
- elif isinstance(dataset, DataFrame):
281
- self._fit_snowpark(dataset)
282
- else:
283
- raise TypeError(
284
- f"Unexpected dataset type: {type(dataset)}."
285
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
286
- )
273
+ if isinstance(dataset, DataFrame):
274
+ session = dataset._session
275
+ assert session is not None # keep mypy happy
276
+ # Validate that key package version in user workspace are supported in snowflake conda channel
277
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
278
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
279
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
280
+
281
+ # Specify input columns so column pruning will be enforced
282
+ selected_cols = self._get_active_columns()
283
+ if len(selected_cols) > 0:
284
+ dataset = dataset.select(selected_cols)
285
+
286
+ self._snowpark_cols = dataset.select(self.input_cols).columns
287
+
288
+ # If we are already in a stored procedure, no need to kick off another one.
289
+ if SNOWML_SPROC_ENV in os.environ:
290
+ statement_params = telemetry.get_function_usage_statement_params(
291
+ project=_PROJECT,
292
+ subproject=_SUBPROJECT,
293
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
294
+ api_calls=[Session.call],
295
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
296
+ )
297
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
298
+ pd_df.columns = dataset.columns
299
+ dataset = pd_df
300
+
301
+ model_trainer = ModelTrainerBuilder.build(
302
+ estimator=self._sklearn_object,
303
+ dataset=dataset,
304
+ input_cols=self.input_cols,
305
+ label_cols=self.label_cols,
306
+ sample_weight_col=self.sample_weight_col,
307
+ autogenerated=self._autogenerated,
308
+ subproject=_SUBPROJECT
309
+ )
310
+ self._sklearn_object = model_trainer.train()
287
311
  self._is_fitted = True
288
312
  self._get_model_signatures(dataset)
289
313
  return self
290
314
 
291
- def _fit_snowpark(self, dataset: DataFrame) -> None:
292
- session = dataset._session
293
- assert session is not None # keep mypy happy
294
- # Validate that key package version in user workspace are supported in snowflake conda channel
295
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
296
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
297
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
298
-
299
- # Specify input columns so column pruning will be enforced
300
- selected_cols = self._get_active_columns()
301
- if len(selected_cols) > 0:
302
- dataset = dataset.select(selected_cols)
303
-
304
- estimator = self._sklearn_object
305
- assert estimator is not None # Keep mypy happy
306
-
307
- self._snowpark_cols = dataset.select(self.input_cols).columns
308
-
309
- self._sklearn_object = self._handlers.fit_snowpark(
310
- dataset,
311
- session,
312
- estimator,
313
- ["snowflake-snowpark-python"] + self._get_dependencies(),
314
- self.input_cols,
315
- self.label_cols,
316
- self.sample_weight_col,
317
- )
318
-
319
315
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
320
316
  if self._drop_input_cols:
321
317
  return []
@@ -503,11 +499,6 @@ class LinearSVR(BaseTransformer):
503
499
  subproject=_SUBPROJECT,
504
500
  custom_tags=dict([("autogen", True)]),
505
501
  )
506
- @telemetry.add_stmt_params_to_df(
507
- project=_PROJECT,
508
- subproject=_SUBPROJECT,
509
- custom_tags=dict([("autogen", True)]),
510
- )
511
502
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
512
503
  """Predict using the linear model
513
504
  For more details on this function, see [sklearn.svm.LinearSVR.predict]
@@ -561,11 +552,6 @@ class LinearSVR(BaseTransformer):
561
552
  subproject=_SUBPROJECT,
562
553
  custom_tags=dict([("autogen", True)]),
563
554
  )
564
- @telemetry.add_stmt_params_to_df(
565
- project=_PROJECT,
566
- subproject=_SUBPROJECT,
567
- custom_tags=dict([("autogen", True)]),
568
- )
569
555
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
570
556
  """Method not supported for this class.
571
557
 
@@ -622,7 +608,8 @@ class LinearSVR(BaseTransformer):
622
608
  if False:
623
609
  self.fit(dataset)
624
610
  assert self._sklearn_object is not None
625
- return self._sklearn_object.labels_
611
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
612
+ return labels
626
613
  else:
627
614
  raise NotImplementedError
628
615
 
@@ -658,6 +645,7 @@ class LinearSVR(BaseTransformer):
658
645
  output_cols = []
659
646
 
660
647
  # Make sure column names are valid snowflake identifiers.
648
+ assert output_cols is not None # Make MyPy happy
661
649
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
662
650
 
663
651
  return rv
@@ -668,11 +656,6 @@ class LinearSVR(BaseTransformer):
668
656
  subproject=_SUBPROJECT,
669
657
  custom_tags=dict([("autogen", True)]),
670
658
  )
671
- @telemetry.add_stmt_params_to_df(
672
- project=_PROJECT,
673
- subproject=_SUBPROJECT,
674
- custom_tags=dict([("autogen", True)]),
675
- )
676
659
  def predict_proba(
677
660
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
678
661
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -713,11 +696,6 @@ class LinearSVR(BaseTransformer):
713
696
  subproject=_SUBPROJECT,
714
697
  custom_tags=dict([("autogen", True)]),
715
698
  )
716
- @telemetry.add_stmt_params_to_df(
717
- project=_PROJECT,
718
- subproject=_SUBPROJECT,
719
- custom_tags=dict([("autogen", True)]),
720
- )
721
699
  def predict_log_proba(
722
700
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
723
701
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -754,16 +732,6 @@ class LinearSVR(BaseTransformer):
754
732
  return output_df
755
733
 
756
734
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
757
- @telemetry.send_api_usage_telemetry(
758
- project=_PROJECT,
759
- subproject=_SUBPROJECT,
760
- custom_tags=dict([("autogen", True)]),
761
- )
762
- @telemetry.add_stmt_params_to_df(
763
- project=_PROJECT,
764
- subproject=_SUBPROJECT,
765
- custom_tags=dict([("autogen", True)]),
766
- )
767
735
  def decision_function(
768
736
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
769
737
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -864,11 +832,6 @@ class LinearSVR(BaseTransformer):
864
832
  subproject=_SUBPROJECT,
865
833
  custom_tags=dict([("autogen", True)]),
866
834
  )
867
- @telemetry.add_stmt_params_to_df(
868
- project=_PROJECT,
869
- subproject=_SUBPROJECT,
870
- custom_tags=dict([("autogen", True)]),
871
- )
872
835
  def kneighbors(
873
836
  self,
874
837
  dataset: Union[DataFrame, pd.DataFrame],
@@ -928,18 +891,28 @@ class LinearSVR(BaseTransformer):
928
891
  # For classifier, the type of predict is the same as the type of label
929
892
  if self._sklearn_object._estimator_type == 'classifier':
930
893
  # label columns is the desired type for output
931
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
894
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
932
895
  # rename the output columns
933
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
896
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
934
897
  self._model_signature_dict["predict"] = ModelSignature(inputs,
935
898
  ([] if self._drop_input_cols else inputs)
936
899
  + outputs)
900
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
901
+ # For outlier models, returns -1 for outliers and 1 for inliers.
902
+ # Clusterer returns int64 cluster labels.
903
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
904
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
905
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
906
+ ([] if self._drop_input_cols else inputs)
907
+ + outputs)
908
+
937
909
  # For regressor, the type of predict is float64
938
910
  elif self._sklearn_object._estimator_type == 'regressor':
939
911
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
940
912
  self._model_signature_dict["predict"] = ModelSignature(inputs,
941
913
  ([] if self._drop_input_cols else inputs)
942
914
  + outputs)
915
+
943
916
  for prob_func in PROB_FUNCTIONS:
944
917
  if hasattr(self, prob_func):
945
918
  output_cols_prefix: str = f"{prob_func}_"