snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearSVR(BaseTransformer):
|
57
58
|
r"""Linear Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.LinearSVR]
|
@@ -60,6 +61,51 @@ class LinearSVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
epsilon: float, default=0.0
|
64
110
|
Epsilon parameter in the epsilon-insensitive loss function. Note
|
65
111
|
that the value of this parameter depends on the scale of the target
|
@@ -113,35 +159,6 @@ class LinearSVR(BaseTransformer):
|
|
113
159
|
|
114
160
|
max_iter: int, default=1000
|
115
161
|
The maximum number of iterations to be run.
|
116
|
-
|
117
|
-
input_cols: Optional[Union[str, List[str]]]
|
118
|
-
A string or list of strings representing column names that contain features.
|
119
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
120
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
121
|
-
considered input columns.
|
122
|
-
|
123
|
-
label_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that contain labels.
|
125
|
-
This is a required param for estimators, as there is no way to infer these
|
126
|
-
columns. If this parameter is not specified, then object is fitted without
|
127
|
-
labels (like a transformer).
|
128
|
-
|
129
|
-
output_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that will store the
|
131
|
-
output of predict and transform operations. The length of output_cols must
|
132
|
-
match the expected number of output columns from the specific estimator or
|
133
|
-
transformer class used.
|
134
|
-
If this parameter is not specified, output column names are derived by
|
135
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
136
|
-
column names work for estimator's predict() method, but output_cols must
|
137
|
-
be set explicitly for transformers.
|
138
|
-
|
139
|
-
sample_weight_col: Optional[str]
|
140
|
-
A string representing the column name containing the sample weights.
|
141
|
-
This argument is only required when working with weighted datasets.
|
142
|
-
|
143
|
-
drop_input_cols: Optional[bool], default=False
|
144
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
145
162
|
"""
|
146
163
|
|
147
164
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -160,6 +177,7 @@ class LinearSVR(BaseTransformer):
|
|
160
177
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
161
178
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
162
179
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
163
181
|
drop_input_cols: Optional[bool] = False,
|
164
182
|
sample_weight_col: Optional[str] = None,
|
165
183
|
) -> None:
|
@@ -168,9 +186,10 @@ class LinearSVR(BaseTransformer):
|
|
168
186
|
self.set_input_cols(input_cols)
|
169
187
|
self.set_output_cols(output_cols)
|
170
188
|
self.set_label_cols(label_cols)
|
189
|
+
self.set_passthrough_cols(passthrough_cols)
|
171
190
|
self.set_drop_input_cols(drop_input_cols)
|
172
191
|
self.set_sample_weight_col(sample_weight_col)
|
173
|
-
deps = set(
|
192
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
174
193
|
|
175
194
|
self._deps = list(deps)
|
176
195
|
|
@@ -188,13 +207,14 @@ class LinearSVR(BaseTransformer):
|
|
188
207
|
args=init_args,
|
189
208
|
klass=sklearn.svm.LinearSVR
|
190
209
|
)
|
191
|
-
self._sklearn_object = sklearn.svm.LinearSVR(
|
210
|
+
self._sklearn_object: Any = sklearn.svm.LinearSVR(
|
192
211
|
**cleaned_up_init_args,
|
193
212
|
)
|
194
213
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
195
214
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
196
215
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
197
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
216
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
217
|
+
self._autogenerated = True
|
198
218
|
|
199
219
|
def _get_rand_id(self) -> str:
|
200
220
|
"""
|
@@ -205,24 +225,6 @@ class LinearSVR(BaseTransformer):
|
|
205
225
|
"""
|
206
226
|
return str(uuid4()).replace("-", "_").upper()
|
207
227
|
|
208
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
209
|
-
"""
|
210
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
211
|
-
|
212
|
-
Args:
|
213
|
-
dataset: Input dataset.
|
214
|
-
"""
|
215
|
-
if not self.input_cols:
|
216
|
-
cols = [
|
217
|
-
c for c in dataset.columns
|
218
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
219
|
-
]
|
220
|
-
self.set_input_cols(input_cols=cols)
|
221
|
-
|
222
|
-
if not self.output_cols:
|
223
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
224
|
-
self.set_output_cols(output_cols=cols)
|
225
|
-
|
226
228
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LinearSVR":
|
227
229
|
"""
|
228
230
|
Input columns setter.
|
@@ -268,54 +270,48 @@ class LinearSVR(BaseTransformer):
|
|
268
270
|
self
|
269
271
|
"""
|
270
272
|
self._infer_input_output_cols(dataset)
|
271
|
-
if isinstance(dataset,
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
self.
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
273
|
+
if isinstance(dataset, DataFrame):
|
274
|
+
session = dataset._session
|
275
|
+
assert session is not None # keep mypy happy
|
276
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
277
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
278
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
279
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
280
|
+
|
281
|
+
# Specify input columns so column pruning will be enforced
|
282
|
+
selected_cols = self._get_active_columns()
|
283
|
+
if len(selected_cols) > 0:
|
284
|
+
dataset = dataset.select(selected_cols)
|
285
|
+
|
286
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
+
|
288
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
289
|
+
if SNOWML_SPROC_ENV in os.environ:
|
290
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
291
|
+
project=_PROJECT,
|
292
|
+
subproject=_SUBPROJECT,
|
293
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
|
294
|
+
api_calls=[Session.call],
|
295
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
296
|
+
)
|
297
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
298
|
+
pd_df.columns = dataset.columns
|
299
|
+
dataset = pd_df
|
300
|
+
|
301
|
+
model_trainer = ModelTrainerBuilder.build(
|
302
|
+
estimator=self._sklearn_object,
|
303
|
+
dataset=dataset,
|
304
|
+
input_cols=self.input_cols,
|
305
|
+
label_cols=self.label_cols,
|
306
|
+
sample_weight_col=self.sample_weight_col,
|
307
|
+
autogenerated=self._autogenerated,
|
308
|
+
subproject=_SUBPROJECT
|
309
|
+
)
|
310
|
+
self._sklearn_object = model_trainer.train()
|
287
311
|
self._is_fitted = True
|
288
312
|
self._get_model_signatures(dataset)
|
289
313
|
return self
|
290
314
|
|
291
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
292
|
-
session = dataset._session
|
293
|
-
assert session is not None # keep mypy happy
|
294
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
295
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
296
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
297
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
298
|
-
|
299
|
-
# Specify input columns so column pruning will be enforced
|
300
|
-
selected_cols = self._get_active_columns()
|
301
|
-
if len(selected_cols) > 0:
|
302
|
-
dataset = dataset.select(selected_cols)
|
303
|
-
|
304
|
-
estimator = self._sklearn_object
|
305
|
-
assert estimator is not None # Keep mypy happy
|
306
|
-
|
307
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
-
|
309
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
310
|
-
dataset,
|
311
|
-
session,
|
312
|
-
estimator,
|
313
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
314
|
-
self.input_cols,
|
315
|
-
self.label_cols,
|
316
|
-
self.sample_weight_col,
|
317
|
-
)
|
318
|
-
|
319
315
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
320
316
|
if self._drop_input_cols:
|
321
317
|
return []
|
@@ -503,11 +499,6 @@ class LinearSVR(BaseTransformer):
|
|
503
499
|
subproject=_SUBPROJECT,
|
504
500
|
custom_tags=dict([("autogen", True)]),
|
505
501
|
)
|
506
|
-
@telemetry.add_stmt_params_to_df(
|
507
|
-
project=_PROJECT,
|
508
|
-
subproject=_SUBPROJECT,
|
509
|
-
custom_tags=dict([("autogen", True)]),
|
510
|
-
)
|
511
502
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
512
503
|
"""Predict using the linear model
|
513
504
|
For more details on this function, see [sklearn.svm.LinearSVR.predict]
|
@@ -561,11 +552,6 @@ class LinearSVR(BaseTransformer):
|
|
561
552
|
subproject=_SUBPROJECT,
|
562
553
|
custom_tags=dict([("autogen", True)]),
|
563
554
|
)
|
564
|
-
@telemetry.add_stmt_params_to_df(
|
565
|
-
project=_PROJECT,
|
566
|
-
subproject=_SUBPROJECT,
|
567
|
-
custom_tags=dict([("autogen", True)]),
|
568
|
-
)
|
569
555
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
570
556
|
"""Method not supported for this class.
|
571
557
|
|
@@ -622,7 +608,8 @@ class LinearSVR(BaseTransformer):
|
|
622
608
|
if False:
|
623
609
|
self.fit(dataset)
|
624
610
|
assert self._sklearn_object is not None
|
625
|
-
|
611
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
612
|
+
return labels
|
626
613
|
else:
|
627
614
|
raise NotImplementedError
|
628
615
|
|
@@ -658,6 +645,7 @@ class LinearSVR(BaseTransformer):
|
|
658
645
|
output_cols = []
|
659
646
|
|
660
647
|
# Make sure column names are valid snowflake identifiers.
|
648
|
+
assert output_cols is not None # Make MyPy happy
|
661
649
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
662
650
|
|
663
651
|
return rv
|
@@ -668,11 +656,6 @@ class LinearSVR(BaseTransformer):
|
|
668
656
|
subproject=_SUBPROJECT,
|
669
657
|
custom_tags=dict([("autogen", True)]),
|
670
658
|
)
|
671
|
-
@telemetry.add_stmt_params_to_df(
|
672
|
-
project=_PROJECT,
|
673
|
-
subproject=_SUBPROJECT,
|
674
|
-
custom_tags=dict([("autogen", True)]),
|
675
|
-
)
|
676
659
|
def predict_proba(
|
677
660
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
678
661
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -713,11 +696,6 @@ class LinearSVR(BaseTransformer):
|
|
713
696
|
subproject=_SUBPROJECT,
|
714
697
|
custom_tags=dict([("autogen", True)]),
|
715
698
|
)
|
716
|
-
@telemetry.add_stmt_params_to_df(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
699
|
def predict_log_proba(
|
722
700
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
723
701
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -754,16 +732,6 @@ class LinearSVR(BaseTransformer):
|
|
754
732
|
return output_df
|
755
733
|
|
756
734
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
757
|
-
@telemetry.send_api_usage_telemetry(
|
758
|
-
project=_PROJECT,
|
759
|
-
subproject=_SUBPROJECT,
|
760
|
-
custom_tags=dict([("autogen", True)]),
|
761
|
-
)
|
762
|
-
@telemetry.add_stmt_params_to_df(
|
763
|
-
project=_PROJECT,
|
764
|
-
subproject=_SUBPROJECT,
|
765
|
-
custom_tags=dict([("autogen", True)]),
|
766
|
-
)
|
767
735
|
def decision_function(
|
768
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
769
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -864,11 +832,6 @@ class LinearSVR(BaseTransformer):
|
|
864
832
|
subproject=_SUBPROJECT,
|
865
833
|
custom_tags=dict([("autogen", True)]),
|
866
834
|
)
|
867
|
-
@telemetry.add_stmt_params_to_df(
|
868
|
-
project=_PROJECT,
|
869
|
-
subproject=_SUBPROJECT,
|
870
|
-
custom_tags=dict([("autogen", True)]),
|
871
|
-
)
|
872
835
|
def kneighbors(
|
873
836
|
self,
|
874
837
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -928,18 +891,28 @@ class LinearSVR(BaseTransformer):
|
|
928
891
|
# For classifier, the type of predict is the same as the type of label
|
929
892
|
if self._sklearn_object._estimator_type == 'classifier':
|
930
893
|
# label columns is the desired type for output
|
931
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
894
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
932
895
|
# rename the output columns
|
933
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
896
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
934
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
935
898
|
([] if self._drop_input_cols else inputs)
|
936
899
|
+ outputs)
|
900
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
901
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
902
|
+
# Clusterer returns int64 cluster labels.
|
903
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
904
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
905
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
906
|
+
([] if self._drop_input_cols else inputs)
|
907
|
+
+ outputs)
|
908
|
+
|
937
909
|
# For regressor, the type of predict is float64
|
938
910
|
elif self._sklearn_object._estimator_type == 'regressor':
|
939
911
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
940
912
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
941
913
|
([] if self._drop_input_cols else inputs)
|
942
914
|
+ outputs)
|
915
|
+
|
943
916
|
for prob_func in PROB_FUNCTIONS:
|
944
917
|
if hasattr(self, prob_func):
|
945
918
|
output_cols_prefix: str = f"{prob_func}_"
|