snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ExtraTreeClassifier(BaseTransformer):
57
58
  r"""An extremely randomized tree classifier
58
59
  For more details on this class, see [sklearn.tree.ExtraTreeClassifier]
@@ -60,6 +61,51 @@ class ExtraTreeClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  criterion: {"gini", "entropy", "log_loss"}, default="gini"
64
110
  The function to measure the quality of a split. Supported criteria are
65
111
  "gini" for the Gini impurity and "log_loss" and "entropy" both for the
@@ -166,35 +212,6 @@ class ExtraTreeClassifier(BaseTransformer):
166
212
  subtree with the largest cost complexity that is smaller than
167
213
  ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
168
214
  :ref:`minimal_cost_complexity_pruning` for details.
169
-
170
- input_cols: Optional[Union[str, List[str]]]
171
- A string or list of strings representing column names that contain features.
172
- If this parameter is not specified, all columns in the input DataFrame except
173
- the columns specified by label_cols and sample_weight_col parameters are
174
- considered input columns.
175
-
176
- label_cols: Optional[Union[str, List[str]]]
177
- A string or list of strings representing column names that contain labels.
178
- This is a required param for estimators, as there is no way to infer these
179
- columns. If this parameter is not specified, then object is fitted without
180
- labels (like a transformer).
181
-
182
- output_cols: Optional[Union[str, List[str]]]
183
- A string or list of strings representing column names that will store the
184
- output of predict and transform operations. The length of output_cols must
185
- match the expected number of output columns from the specific estimator or
186
- transformer class used.
187
- If this parameter is not specified, output column names are derived by
188
- adding an OUTPUT_ prefix to the label column names. These inferred output
189
- column names work for estimator's predict() method, but output_cols must
190
- be set explicitly for transformers.
191
-
192
- sample_weight_col: Optional[str]
193
- A string representing the column name containing the sample weights.
194
- This argument is only required when working with weighted datasets.
195
-
196
- drop_input_cols: Optional[bool], default=False
197
- If set, the response of predict(), transform() methods will not contain input columns.
198
215
  """
199
216
 
200
217
  def __init__( # type: ignore[no-untyped-def]
@@ -215,6 +232,7 @@ class ExtraTreeClassifier(BaseTransformer):
215
232
  input_cols: Optional[Union[str, Iterable[str]]] = None,
216
233
  output_cols: Optional[Union[str, Iterable[str]]] = None,
217
234
  label_cols: Optional[Union[str, Iterable[str]]] = None,
235
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
218
236
  drop_input_cols: Optional[bool] = False,
219
237
  sample_weight_col: Optional[str] = None,
220
238
  ) -> None:
@@ -223,9 +241,10 @@ class ExtraTreeClassifier(BaseTransformer):
223
241
  self.set_input_cols(input_cols)
224
242
  self.set_output_cols(output_cols)
225
243
  self.set_label_cols(label_cols)
244
+ self.set_passthrough_cols(passthrough_cols)
226
245
  self.set_drop_input_cols(drop_input_cols)
227
246
  self.set_sample_weight_col(sample_weight_col)
228
- deps = set(SklearnWrapperProvider().dependencies)
247
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
229
248
 
230
249
  self._deps = list(deps)
231
250
 
@@ -245,13 +264,14 @@ class ExtraTreeClassifier(BaseTransformer):
245
264
  args=init_args,
246
265
  klass=sklearn.tree.ExtraTreeClassifier
247
266
  )
248
- self._sklearn_object = sklearn.tree.ExtraTreeClassifier(
267
+ self._sklearn_object: Any = sklearn.tree.ExtraTreeClassifier(
249
268
  **cleaned_up_init_args,
250
269
  )
251
270
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
252
271
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
253
272
  self._snowpark_cols: Optional[List[str]] = self.input_cols
254
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
273
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
274
+ self._autogenerated = True
255
275
 
256
276
  def _get_rand_id(self) -> str:
257
277
  """
@@ -262,24 +282,6 @@ class ExtraTreeClassifier(BaseTransformer):
262
282
  """
263
283
  return str(uuid4()).replace("-", "_").upper()
264
284
 
265
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
266
- """
267
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
268
-
269
- Args:
270
- dataset: Input dataset.
271
- """
272
- if not self.input_cols:
273
- cols = [
274
- c for c in dataset.columns
275
- if c not in self.get_label_cols() and c != self.sample_weight_col
276
- ]
277
- self.set_input_cols(input_cols=cols)
278
-
279
- if not self.output_cols:
280
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
281
- self.set_output_cols(output_cols=cols)
282
-
283
285
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreeClassifier":
284
286
  """
285
287
  Input columns setter.
@@ -325,54 +327,48 @@ class ExtraTreeClassifier(BaseTransformer):
325
327
  self
326
328
  """
327
329
  self._infer_input_output_cols(dataset)
328
- if isinstance(dataset, pd.DataFrame):
329
- assert self._sklearn_object is not None # keep mypy happy
330
- self._sklearn_object = self._handlers.fit_pandas(
331
- dataset,
332
- self._sklearn_object,
333
- self.input_cols,
334
- self.label_cols,
335
- self.sample_weight_col
336
- )
337
- elif isinstance(dataset, DataFrame):
338
- self._fit_snowpark(dataset)
339
- else:
340
- raise TypeError(
341
- f"Unexpected dataset type: {type(dataset)}."
342
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
343
- )
330
+ if isinstance(dataset, DataFrame):
331
+ session = dataset._session
332
+ assert session is not None # keep mypy happy
333
+ # Validate that key package version in user workspace are supported in snowflake conda channel
334
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
335
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
336
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
337
+
338
+ # Specify input columns so column pruning will be enforced
339
+ selected_cols = self._get_active_columns()
340
+ if len(selected_cols) > 0:
341
+ dataset = dataset.select(selected_cols)
342
+
343
+ self._snowpark_cols = dataset.select(self.input_cols).columns
344
+
345
+ # If we are already in a stored procedure, no need to kick off another one.
346
+ if SNOWML_SPROC_ENV in os.environ:
347
+ statement_params = telemetry.get_function_usage_statement_params(
348
+ project=_PROJECT,
349
+ subproject=_SUBPROJECT,
350
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeClassifier.__class__.__name__),
351
+ api_calls=[Session.call],
352
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
353
+ )
354
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
355
+ pd_df.columns = dataset.columns
356
+ dataset = pd_df
357
+
358
+ model_trainer = ModelTrainerBuilder.build(
359
+ estimator=self._sklearn_object,
360
+ dataset=dataset,
361
+ input_cols=self.input_cols,
362
+ label_cols=self.label_cols,
363
+ sample_weight_col=self.sample_weight_col,
364
+ autogenerated=self._autogenerated,
365
+ subproject=_SUBPROJECT
366
+ )
367
+ self._sklearn_object = model_trainer.train()
344
368
  self._is_fitted = True
345
369
  self._get_model_signatures(dataset)
346
370
  return self
347
371
 
348
- def _fit_snowpark(self, dataset: DataFrame) -> None:
349
- session = dataset._session
350
- assert session is not None # keep mypy happy
351
- # Validate that key package version in user workspace are supported in snowflake conda channel
352
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
353
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
354
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
355
-
356
- # Specify input columns so column pruning will be enforced
357
- selected_cols = self._get_active_columns()
358
- if len(selected_cols) > 0:
359
- dataset = dataset.select(selected_cols)
360
-
361
- estimator = self._sklearn_object
362
- assert estimator is not None # Keep mypy happy
363
-
364
- self._snowpark_cols = dataset.select(self.input_cols).columns
365
-
366
- self._sklearn_object = self._handlers.fit_snowpark(
367
- dataset,
368
- session,
369
- estimator,
370
- ["snowflake-snowpark-python"] + self._get_dependencies(),
371
- self.input_cols,
372
- self.label_cols,
373
- self.sample_weight_col,
374
- )
375
-
376
372
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
377
373
  if self._drop_input_cols:
378
374
  return []
@@ -560,11 +556,6 @@ class ExtraTreeClassifier(BaseTransformer):
560
556
  subproject=_SUBPROJECT,
561
557
  custom_tags=dict([("autogen", True)]),
562
558
  )
563
- @telemetry.add_stmt_params_to_df(
564
- project=_PROJECT,
565
- subproject=_SUBPROJECT,
566
- custom_tags=dict([("autogen", True)]),
567
- )
568
559
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
569
560
  """Predict class or regression value for X
570
561
  For more details on this function, see [sklearn.tree.ExtraTreeClassifier.predict]
@@ -618,11 +609,6 @@ class ExtraTreeClassifier(BaseTransformer):
618
609
  subproject=_SUBPROJECT,
619
610
  custom_tags=dict([("autogen", True)]),
620
611
  )
621
- @telemetry.add_stmt_params_to_df(
622
- project=_PROJECT,
623
- subproject=_SUBPROJECT,
624
- custom_tags=dict([("autogen", True)]),
625
- )
626
612
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
627
613
  """Method not supported for this class.
628
614
 
@@ -679,7 +665,8 @@ class ExtraTreeClassifier(BaseTransformer):
679
665
  if False:
680
666
  self.fit(dataset)
681
667
  assert self._sklearn_object is not None
682
- return self._sklearn_object.labels_
668
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
669
+ return labels
683
670
  else:
684
671
  raise NotImplementedError
685
672
 
@@ -715,6 +702,7 @@ class ExtraTreeClassifier(BaseTransformer):
715
702
  output_cols = []
716
703
 
717
704
  # Make sure column names are valid snowflake identifiers.
705
+ assert output_cols is not None # Make MyPy happy
718
706
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
719
707
 
720
708
  return rv
@@ -725,11 +713,6 @@ class ExtraTreeClassifier(BaseTransformer):
725
713
  subproject=_SUBPROJECT,
726
714
  custom_tags=dict([("autogen", True)]),
727
715
  )
728
- @telemetry.add_stmt_params_to_df(
729
- project=_PROJECT,
730
- subproject=_SUBPROJECT,
731
- custom_tags=dict([("autogen", True)]),
732
- )
733
716
  def predict_proba(
734
717
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
735
718
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -772,11 +755,6 @@ class ExtraTreeClassifier(BaseTransformer):
772
755
  subproject=_SUBPROJECT,
773
756
  custom_tags=dict([("autogen", True)]),
774
757
  )
775
- @telemetry.add_stmt_params_to_df(
776
- project=_PROJECT,
777
- subproject=_SUBPROJECT,
778
- custom_tags=dict([("autogen", True)]),
779
- )
780
758
  def predict_log_proba(
781
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
782
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -815,16 +793,6 @@ class ExtraTreeClassifier(BaseTransformer):
815
793
  return output_df
816
794
 
817
795
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
818
- @telemetry.send_api_usage_telemetry(
819
- project=_PROJECT,
820
- subproject=_SUBPROJECT,
821
- custom_tags=dict([("autogen", True)]),
822
- )
823
- @telemetry.add_stmt_params_to_df(
824
- project=_PROJECT,
825
- subproject=_SUBPROJECT,
826
- custom_tags=dict([("autogen", True)]),
827
- )
828
796
  def decision_function(
829
797
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
830
798
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -925,11 +893,6 @@ class ExtraTreeClassifier(BaseTransformer):
925
893
  subproject=_SUBPROJECT,
926
894
  custom_tags=dict([("autogen", True)]),
927
895
  )
928
- @telemetry.add_stmt_params_to_df(
929
- project=_PROJECT,
930
- subproject=_SUBPROJECT,
931
- custom_tags=dict([("autogen", True)]),
932
- )
933
896
  def kneighbors(
934
897
  self,
935
898
  dataset: Union[DataFrame, pd.DataFrame],
@@ -989,18 +952,28 @@ class ExtraTreeClassifier(BaseTransformer):
989
952
  # For classifier, the type of predict is the same as the type of label
990
953
  if self._sklearn_object._estimator_type == 'classifier':
991
954
  # label columns is the desired type for output
992
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
955
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
993
956
  # rename the output columns
994
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
957
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
995
958
  self._model_signature_dict["predict"] = ModelSignature(inputs,
996
959
  ([] if self._drop_input_cols else inputs)
997
960
  + outputs)
961
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
+ # For outlier models, returns -1 for outliers and 1 for inliers.
963
+ # Clusterer returns int64 cluster labels.
964
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
967
+ ([] if self._drop_input_cols else inputs)
968
+ + outputs)
969
+
998
970
  # For regressor, the type of predict is float64
999
971
  elif self._sklearn_object._estimator_type == 'regressor':
1000
972
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1001
973
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
974
  ([] if self._drop_input_cols else inputs)
1003
975
  + outputs)
976
+
1004
977
  for prob_func in PROB_FUNCTIONS:
1005
978
  if hasattr(self, prob_func):
1006
979
  output_cols_prefix: str = f"{prob_func}_"