snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreeClassifier(BaseTransformer):
|
57
58
|
r"""An extremely randomized tree classifier
|
58
59
|
For more details on this class, see [sklearn.tree.ExtraTreeClassifier]
|
@@ -60,6 +61,51 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"gini", "entropy", "log_loss"}, default="gini"
|
64
110
|
The function to measure the quality of a split. Supported criteria are
|
65
111
|
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
|
@@ -166,35 +212,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
166
212
|
subtree with the largest cost complexity that is smaller than
|
167
213
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
168
214
|
:ref:`minimal_cost_complexity_pruning` for details.
|
169
|
-
|
170
|
-
input_cols: Optional[Union[str, List[str]]]
|
171
|
-
A string or list of strings representing column names that contain features.
|
172
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
173
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
174
|
-
considered input columns.
|
175
|
-
|
176
|
-
label_cols: Optional[Union[str, List[str]]]
|
177
|
-
A string or list of strings representing column names that contain labels.
|
178
|
-
This is a required param for estimators, as there is no way to infer these
|
179
|
-
columns. If this parameter is not specified, then object is fitted without
|
180
|
-
labels (like a transformer).
|
181
|
-
|
182
|
-
output_cols: Optional[Union[str, List[str]]]
|
183
|
-
A string or list of strings representing column names that will store the
|
184
|
-
output of predict and transform operations. The length of output_cols must
|
185
|
-
match the expected number of output columns from the specific estimator or
|
186
|
-
transformer class used.
|
187
|
-
If this parameter is not specified, output column names are derived by
|
188
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
189
|
-
column names work for estimator's predict() method, but output_cols must
|
190
|
-
be set explicitly for transformers.
|
191
|
-
|
192
|
-
sample_weight_col: Optional[str]
|
193
|
-
A string representing the column name containing the sample weights.
|
194
|
-
This argument is only required when working with weighted datasets.
|
195
|
-
|
196
|
-
drop_input_cols: Optional[bool], default=False
|
197
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
198
215
|
"""
|
199
216
|
|
200
217
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -215,6 +232,7 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
215
232
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
216
233
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
217
234
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
235
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
218
236
|
drop_input_cols: Optional[bool] = False,
|
219
237
|
sample_weight_col: Optional[str] = None,
|
220
238
|
) -> None:
|
@@ -223,9 +241,10 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
223
241
|
self.set_input_cols(input_cols)
|
224
242
|
self.set_output_cols(output_cols)
|
225
243
|
self.set_label_cols(label_cols)
|
244
|
+
self.set_passthrough_cols(passthrough_cols)
|
226
245
|
self.set_drop_input_cols(drop_input_cols)
|
227
246
|
self.set_sample_weight_col(sample_weight_col)
|
228
|
-
deps = set(
|
247
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
229
248
|
|
230
249
|
self._deps = list(deps)
|
231
250
|
|
@@ -245,13 +264,14 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
245
264
|
args=init_args,
|
246
265
|
klass=sklearn.tree.ExtraTreeClassifier
|
247
266
|
)
|
248
|
-
self._sklearn_object = sklearn.tree.ExtraTreeClassifier(
|
267
|
+
self._sklearn_object: Any = sklearn.tree.ExtraTreeClassifier(
|
249
268
|
**cleaned_up_init_args,
|
250
269
|
)
|
251
270
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
252
271
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
253
272
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
254
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
273
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
274
|
+
self._autogenerated = True
|
255
275
|
|
256
276
|
def _get_rand_id(self) -> str:
|
257
277
|
"""
|
@@ -262,24 +282,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
262
282
|
"""
|
263
283
|
return str(uuid4()).replace("-", "_").upper()
|
264
284
|
|
265
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
266
|
-
"""
|
267
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
268
|
-
|
269
|
-
Args:
|
270
|
-
dataset: Input dataset.
|
271
|
-
"""
|
272
|
-
if not self.input_cols:
|
273
|
-
cols = [
|
274
|
-
c for c in dataset.columns
|
275
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
276
|
-
]
|
277
|
-
self.set_input_cols(input_cols=cols)
|
278
|
-
|
279
|
-
if not self.output_cols:
|
280
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
281
|
-
self.set_output_cols(output_cols=cols)
|
282
|
-
|
283
285
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreeClassifier":
|
284
286
|
"""
|
285
287
|
Input columns setter.
|
@@ -325,54 +327,48 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
325
327
|
self
|
326
328
|
"""
|
327
329
|
self._infer_input_output_cols(dataset)
|
328
|
-
if isinstance(dataset,
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
self.
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
330
|
+
if isinstance(dataset, DataFrame):
|
331
|
+
session = dataset._session
|
332
|
+
assert session is not None # keep mypy happy
|
333
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
334
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
335
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
336
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
337
|
+
|
338
|
+
# Specify input columns so column pruning will be enforced
|
339
|
+
selected_cols = self._get_active_columns()
|
340
|
+
if len(selected_cols) > 0:
|
341
|
+
dataset = dataset.select(selected_cols)
|
342
|
+
|
343
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
344
|
+
|
345
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
346
|
+
if SNOWML_SPROC_ENV in os.environ:
|
347
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
348
|
+
project=_PROJECT,
|
349
|
+
subproject=_SUBPROJECT,
|
350
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeClassifier.__class__.__name__),
|
351
|
+
api_calls=[Session.call],
|
352
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
353
|
+
)
|
354
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
355
|
+
pd_df.columns = dataset.columns
|
356
|
+
dataset = pd_df
|
357
|
+
|
358
|
+
model_trainer = ModelTrainerBuilder.build(
|
359
|
+
estimator=self._sklearn_object,
|
360
|
+
dataset=dataset,
|
361
|
+
input_cols=self.input_cols,
|
362
|
+
label_cols=self.label_cols,
|
363
|
+
sample_weight_col=self.sample_weight_col,
|
364
|
+
autogenerated=self._autogenerated,
|
365
|
+
subproject=_SUBPROJECT
|
366
|
+
)
|
367
|
+
self._sklearn_object = model_trainer.train()
|
344
368
|
self._is_fitted = True
|
345
369
|
self._get_model_signatures(dataset)
|
346
370
|
return self
|
347
371
|
|
348
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
349
|
-
session = dataset._session
|
350
|
-
assert session is not None # keep mypy happy
|
351
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
352
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
353
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
354
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
355
|
-
|
356
|
-
# Specify input columns so column pruning will be enforced
|
357
|
-
selected_cols = self._get_active_columns()
|
358
|
-
if len(selected_cols) > 0:
|
359
|
-
dataset = dataset.select(selected_cols)
|
360
|
-
|
361
|
-
estimator = self._sklearn_object
|
362
|
-
assert estimator is not None # Keep mypy happy
|
363
|
-
|
364
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
365
|
-
|
366
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
367
|
-
dataset,
|
368
|
-
session,
|
369
|
-
estimator,
|
370
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
371
|
-
self.input_cols,
|
372
|
-
self.label_cols,
|
373
|
-
self.sample_weight_col,
|
374
|
-
)
|
375
|
-
|
376
372
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
377
373
|
if self._drop_input_cols:
|
378
374
|
return []
|
@@ -560,11 +556,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
560
556
|
subproject=_SUBPROJECT,
|
561
557
|
custom_tags=dict([("autogen", True)]),
|
562
558
|
)
|
563
|
-
@telemetry.add_stmt_params_to_df(
|
564
|
-
project=_PROJECT,
|
565
|
-
subproject=_SUBPROJECT,
|
566
|
-
custom_tags=dict([("autogen", True)]),
|
567
|
-
)
|
568
559
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
569
560
|
"""Predict class or regression value for X
|
570
561
|
For more details on this function, see [sklearn.tree.ExtraTreeClassifier.predict]
|
@@ -618,11 +609,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
618
609
|
subproject=_SUBPROJECT,
|
619
610
|
custom_tags=dict([("autogen", True)]),
|
620
611
|
)
|
621
|
-
@telemetry.add_stmt_params_to_df(
|
622
|
-
project=_PROJECT,
|
623
|
-
subproject=_SUBPROJECT,
|
624
|
-
custom_tags=dict([("autogen", True)]),
|
625
|
-
)
|
626
612
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
627
613
|
"""Method not supported for this class.
|
628
614
|
|
@@ -679,7 +665,8 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
679
665
|
if False:
|
680
666
|
self.fit(dataset)
|
681
667
|
assert self._sklearn_object is not None
|
682
|
-
|
668
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
669
|
+
return labels
|
683
670
|
else:
|
684
671
|
raise NotImplementedError
|
685
672
|
|
@@ -715,6 +702,7 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
715
702
|
output_cols = []
|
716
703
|
|
717
704
|
# Make sure column names are valid snowflake identifiers.
|
705
|
+
assert output_cols is not None # Make MyPy happy
|
718
706
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
719
707
|
|
720
708
|
return rv
|
@@ -725,11 +713,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
725
713
|
subproject=_SUBPROJECT,
|
726
714
|
custom_tags=dict([("autogen", True)]),
|
727
715
|
)
|
728
|
-
@telemetry.add_stmt_params_to_df(
|
729
|
-
project=_PROJECT,
|
730
|
-
subproject=_SUBPROJECT,
|
731
|
-
custom_tags=dict([("autogen", True)]),
|
732
|
-
)
|
733
716
|
def predict_proba(
|
734
717
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
735
718
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -772,11 +755,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
772
755
|
subproject=_SUBPROJECT,
|
773
756
|
custom_tags=dict([("autogen", True)]),
|
774
757
|
)
|
775
|
-
@telemetry.add_stmt_params_to_df(
|
776
|
-
project=_PROJECT,
|
777
|
-
subproject=_SUBPROJECT,
|
778
|
-
custom_tags=dict([("autogen", True)]),
|
779
|
-
)
|
780
758
|
def predict_log_proba(
|
781
759
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
782
760
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -815,16 +793,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
815
793
|
return output_df
|
816
794
|
|
817
795
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
818
|
-
@telemetry.send_api_usage_telemetry(
|
819
|
-
project=_PROJECT,
|
820
|
-
subproject=_SUBPROJECT,
|
821
|
-
custom_tags=dict([("autogen", True)]),
|
822
|
-
)
|
823
|
-
@telemetry.add_stmt_params_to_df(
|
824
|
-
project=_PROJECT,
|
825
|
-
subproject=_SUBPROJECT,
|
826
|
-
custom_tags=dict([("autogen", True)]),
|
827
|
-
)
|
828
796
|
def decision_function(
|
829
797
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
830
798
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -925,11 +893,6 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
925
893
|
subproject=_SUBPROJECT,
|
926
894
|
custom_tags=dict([("autogen", True)]),
|
927
895
|
)
|
928
|
-
@telemetry.add_stmt_params_to_df(
|
929
|
-
project=_PROJECT,
|
930
|
-
subproject=_SUBPROJECT,
|
931
|
-
custom_tags=dict([("autogen", True)]),
|
932
|
-
)
|
933
896
|
def kneighbors(
|
934
897
|
self,
|
935
898
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -989,18 +952,28 @@ class ExtraTreeClassifier(BaseTransformer):
|
|
989
952
|
# For classifier, the type of predict is the same as the type of label
|
990
953
|
if self._sklearn_object._estimator_type == 'classifier':
|
991
954
|
# label columns is the desired type for output
|
992
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
955
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
993
956
|
# rename the output columns
|
994
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
957
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
995
958
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
996
959
|
([] if self._drop_input_cols else inputs)
|
997
960
|
+ outputs)
|
961
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
+
# Clusterer returns int64 cluster labels.
|
964
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
967
|
+
([] if self._drop_input_cols else inputs)
|
968
|
+
+ outputs)
|
969
|
+
|
998
970
|
# For regressor, the type of predict is float64
|
999
971
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1000
972
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1001
973
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1002
974
|
([] if self._drop_input_cols else inputs)
|
1003
975
|
+ outputs)
|
976
|
+
|
1004
977
|
for prob_func in PROB_FUNCTIONS:
|
1005
978
|
if hasattr(self, prob_func):
|
1006
979
|
output_cols_prefix: str = f"{prob_func}_"
|