snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,554 @@
1
+ import importlib
2
+ import inspect
3
+ import io
4
+ import os
5
+ import posixpath
6
+ import sys
7
+ from typing import Any, Dict, List, Optional, Tuple, Union
8
+
9
+ import cloudpickle as cp
10
+ import numpy as np
11
+ from scipy.stats import rankdata
12
+ from sklearn import model_selection
13
+
14
+ from snowflake.ml._internal import telemetry
15
+ from snowflake.ml._internal.utils import identifier, snowpark_dataframe_utils
16
+ from snowflake.ml._internal.utils.temp_file_utils import (
17
+ cleanup_temp_files,
18
+ get_temp_file_path,
19
+ )
20
+ from snowflake.ml.modeling._internal.model_specifications import (
21
+ ModelSpecificationsBuilder,
22
+ )
23
+ from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer
24
+ from snowflake.snowpark import DataFrame, Session, functions as F
25
+ from snowflake.snowpark._internal.utils import (
26
+ TempObjectType,
27
+ random_name_for_temp_object,
28
+ )
29
+ from snowflake.snowpark.functions import col, sproc, udtf
30
+ from snowflake.snowpark.types import IntegerType, StringType, StructField, StructType
31
+
32
+ cp.register_pickle_by_value(inspect.getmodule(get_temp_file_path))
33
+ cp.register_pickle_by_value(inspect.getmodule(identifier.get_inferred_name))
34
+
35
+ _PROJECT = "ModelDevelopment"
36
+ DEFAULT_UDTF_NJOBS = 3
37
+
38
+
39
+ class DistributedHPOTrainer(SnowparkModelTrainer):
40
+ """
41
+ A class for performing distributed hyperparameter optimization (HPO) using Snowpark.
42
+
43
+ This class inherits from SnowparkModelTrainer and extends its functionality
44
+ to support distributed HPO for machine learning models. It enables optimization
45
+ of hyperparameters by distributing the tasks across the warehouse using Snowpark.
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ estimator: object,
51
+ dataset: DataFrame,
52
+ session: Session,
53
+ input_cols: List[str],
54
+ label_cols: Optional[List[str]],
55
+ sample_weight_col: Optional[str],
56
+ autogenerated: bool = False,
57
+ subproject: str = "",
58
+ ) -> None:
59
+ """
60
+ Initializes the DistributedHPOTrainer with a model, a Snowpark DataFrame, feature, and label column names, etc.
61
+
62
+ Args:
63
+ estimator: SKLearn compatible estimator or transformer object.
64
+ dataset: The dataset used for training the model.
65
+ session: Snowflake session object to be used for training.
66
+ input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be used for training.
67
+ label_cols: The name(s) of one or more columns in a DataFrame representing the target variable(s) to learn.
68
+ sample_weight_col: The column name representing the weight of training examples.
69
+ autogenerated: A boolean denoting if the trainer is being used by autogenerated code or not.
70
+ subproject: subproject name to be used in telemetry.
71
+ """
72
+ super().__init__(
73
+ estimator=estimator,
74
+ dataset=dataset,
75
+ session=session,
76
+ input_cols=input_cols,
77
+ label_cols=label_cols,
78
+ sample_weight_col=sample_weight_col,
79
+ autogenerated=autogenerated,
80
+ subproject=subproject,
81
+ )
82
+
83
+ # TODO(snandamuri): Copied this code as it is from the snowpark_handler.
84
+ # Update it to improve the readability.
85
+ def fit_search_snowpark(
86
+ self,
87
+ param_grid: Union[model_selection.ParameterGrid, model_selection.ParameterSampler],
88
+ dataset: DataFrame,
89
+ session: Session,
90
+ estimator: Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV],
91
+ dependencies: List[str],
92
+ udf_imports: List[str],
93
+ input_cols: List[str],
94
+ label_cols: Optional[List[str]],
95
+ sample_weight_col: Optional[str],
96
+ ) -> Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV]:
97
+ from itertools import product
98
+
99
+ import cachetools
100
+ from sklearn.base import clone, is_classifier
101
+ from sklearn.calibration import check_cv
102
+
103
+ # Create one stage for data and for estimators.
104
+ temp_stage_name = random_name_for_temp_object(TempObjectType.STAGE)
105
+ temp_stage_creation_query = f"CREATE OR REPLACE TEMP STAGE {temp_stage_name};"
106
+ session.sql(temp_stage_creation_query).collect()
107
+
108
+ # Stage data.
109
+ dataset = snowpark_dataframe_utils.cast_snowpark_dataframe(dataset)
110
+ remote_file_path = f"{temp_stage_name}/{temp_stage_name}.parquet"
111
+ dataset.write.copy_into_location( # type:ignore[call-overload]
112
+ remote_file_path, file_format_type="parquet", header=True, overwrite=True
113
+ )
114
+ imports = [f"@{row.name}" for row in session.sql(f"LIST @{temp_stage_name}").collect()]
115
+
116
+ # Store GridSearchCV's refit variable. If user set it as False, we don't need to refit it again
117
+ original_refit = estimator.refit
118
+
119
+ # Create a temp file and dump the estimator to that file.
120
+ estimator_file_name = get_temp_file_path()
121
+ params_to_evaluate = []
122
+ for param_to_eval in list(param_grid):
123
+ for k, v in param_to_eval.items():
124
+ param_to_eval[k] = [v]
125
+ params_to_evaluate.append([param_to_eval])
126
+
127
+ with open(estimator_file_name, mode="w+b") as local_estimator_file_obj:
128
+ # Set GridSearchCV refit as False and fit it again after retrieving the best param
129
+ estimator.refit = False
130
+ cp.dump(dict(estimator=estimator, param_grid=params_to_evaluate), local_estimator_file_obj)
131
+ stage_estimator_file_name = posixpath.join(temp_stage_name, os.path.basename(estimator_file_name))
132
+ sproc_statement_params = telemetry.get_function_usage_statement_params(
133
+ project=_PROJECT,
134
+ subproject=self._subproject,
135
+ function_name=telemetry.get_statement_params_full_func_name(
136
+ inspect.currentframe(), self.__class__.__name__
137
+ ),
138
+ api_calls=[sproc],
139
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
140
+ )
141
+ udtf_statement_params = telemetry.get_function_usage_statement_params(
142
+ project=_PROJECT,
143
+ subproject=self._subproject,
144
+ function_name=telemetry.get_statement_params_full_func_name(
145
+ inspect.currentframe(), self.__class__.__name__
146
+ ),
147
+ api_calls=[udtf],
148
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
149
+ )
150
+
151
+ # Put locally serialized estimator on stage.
152
+ put_result = session.file.put(
153
+ estimator_file_name,
154
+ temp_stage_name,
155
+ auto_compress=False,
156
+ overwrite=True,
157
+ )
158
+ estimator_location = put_result[0].target
159
+ imports.append(f"@{temp_stage_name}/{estimator_location}")
160
+
161
+ search_sproc_name = random_name_for_temp_object(TempObjectType.PROCEDURE)
162
+ random_udtf_name = random_name_for_temp_object(TempObjectType.FUNCTION)
163
+
164
+ required_deps = dependencies + [
165
+ "snowflake-snowpark-python<2",
166
+ "fastparquet<2023.11",
167
+ "pyarrow<14",
168
+ "cachetools<5",
169
+ ]
170
+
171
+ @sproc( # type: ignore[misc]
172
+ is_permanent=False,
173
+ name=search_sproc_name,
174
+ packages=required_deps, # type: ignore[arg-type]
175
+ replace=True,
176
+ session=session,
177
+ anonymous=True,
178
+ imports=imports, # type: ignore[arg-type]
179
+ statement_params=sproc_statement_params,
180
+ )
181
+ def _distributed_search(
182
+ session: Session,
183
+ imports: List[str],
184
+ stage_estimator_file_name: str,
185
+ input_cols: List[str],
186
+ label_cols: Optional[List[str]],
187
+ ) -> str:
188
+ import os
189
+ import time
190
+ from typing import Iterator
191
+
192
+ import cloudpickle as cp
193
+ import pandas as pd
194
+ import pyarrow.parquet as pq
195
+ from sklearn.metrics import check_scoring
196
+ from sklearn.metrics._scorer import _check_multimetric_scoring
197
+
198
+ for import_name in udf_imports:
199
+ importlib.import_module(import_name)
200
+
201
+ data_files = [
202
+ filename
203
+ for filename in os.listdir(sys._xoptions["snowflake_import_directory"])
204
+ if filename.startswith(temp_stage_name)
205
+ ]
206
+ partial_df = [
207
+ pq.read_table(os.path.join(sys._xoptions["snowflake_import_directory"], file_name)).to_pandas()
208
+ for file_name in data_files
209
+ ]
210
+ df = pd.concat(partial_df, ignore_index=True)
211
+ df.columns = [identifier.get_inferred_name(col) for col in df.columns]
212
+
213
+ X = df[input_cols]
214
+ y = df[label_cols].squeeze() if label_cols else None
215
+
216
+ local_estimator_file_name = get_temp_file_path()
217
+ session.file.get(stage_estimator_file_name, local_estimator_file_name)
218
+
219
+ local_estimator_file_path = os.path.join(
220
+ local_estimator_file_name, os.listdir(local_estimator_file_name)[0]
221
+ )
222
+ with open(local_estimator_file_path, mode="r+b") as local_estimator_file_obj:
223
+ estimator = cp.load(local_estimator_file_obj)["estimator"]
224
+
225
+ cv_orig = check_cv(estimator.cv, y, classifier=is_classifier(estimator.estimator))
226
+ indices = [test for _, test in cv_orig.split(X, y)]
227
+ local_indices_file_name = get_temp_file_path()
228
+ with open(local_indices_file_name, mode="w+b") as local_indices_file_obj:
229
+ cp.dump(indices, local_indices_file_obj)
230
+
231
+ # Put locally serialized indices on stage.
232
+ put_result = session.file.put(
233
+ local_indices_file_name,
234
+ temp_stage_name,
235
+ auto_compress=False,
236
+ overwrite=True,
237
+ )
238
+ indices_location = put_result[0].target
239
+ imports.append(f"@{temp_stage_name}/{indices_location}")
240
+ indices_len = len(indices)
241
+
242
+ assert estimator is not None
243
+
244
+ @cachetools.cached(cache={})
245
+ def _load_data_into_udf() -> Tuple[
246
+ Dict[str, pd.DataFrame],
247
+ Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV],
248
+ pd.DataFrame,
249
+ int,
250
+ List[Dict[str, Any]],
251
+ ]:
252
+ import pyarrow.parquet as pq
253
+
254
+ data_files = [
255
+ filename
256
+ for filename in os.listdir(sys._xoptions["snowflake_import_directory"])
257
+ if filename.startswith(temp_stage_name)
258
+ ]
259
+ partial_df = [
260
+ pq.read_table(os.path.join(sys._xoptions["snowflake_import_directory"], file_name)).to_pandas()
261
+ for file_name in data_files
262
+ ]
263
+ df = pd.concat(partial_df, ignore_index=True)
264
+ df.columns = [identifier.get_inferred_name(col) for col in df.columns]
265
+
266
+ # load estimator
267
+ local_estimator_file_path = os.path.join(
268
+ sys._xoptions["snowflake_import_directory"], f"{estimator_location}"
269
+ )
270
+ with open(local_estimator_file_path, mode="rb") as local_estimator_file_obj:
271
+ estimator_objects = cp.load(local_estimator_file_obj)
272
+ estimator = estimator_objects["estimator"]
273
+ params_to_evaluate = estimator_objects["param_grid"]
274
+
275
+ # load indices
276
+ local_indices_file_path = os.path.join(
277
+ sys._xoptions["snowflake_import_directory"], f"{indices_location}"
278
+ )
279
+ with open(local_indices_file_path, mode="rb") as local_indices_file_obj:
280
+ indices = cp.load(local_indices_file_obj)
281
+
282
+ argspec = inspect.getfullargspec(estimator.fit)
283
+ args = {"X": df[input_cols]}
284
+
285
+ if label_cols:
286
+ label_arg_name = "Y" if "Y" in argspec.args else "y"
287
+ args[label_arg_name] = df[label_cols].squeeze()
288
+
289
+ if sample_weight_col is not None and "sample_weight" in argspec.args:
290
+ args["sample_weight"] = df[sample_weight_col].squeeze()
291
+ return args, estimator, indices, len(df), params_to_evaluate
292
+
293
+ class SearchCV:
294
+ def __init__(self) -> None:
295
+ args, estimator, indices, data_length, params_to_evaluate = _load_data_into_udf()
296
+ self.args = args
297
+ self.estimator = estimator
298
+ self.indices = indices
299
+ self.data_length = data_length
300
+ self.params_to_evaluate = params_to_evaluate
301
+
302
+ def process(self, params_idx: int, idx: int) -> Iterator[Tuple[str]]:
303
+ if hasattr(estimator, "param_grid"):
304
+ self.estimator.param_grid = self.params_to_evaluate[params_idx]
305
+ else:
306
+ self.estimator.param_distributions = self.params_to_evaluate[params_idx]
307
+ full_indices = np.array([i for i in range(self.data_length)])
308
+ test_indice = self.indices[idx]
309
+ train_indice = np.setdiff1d(full_indices, test_indice)
310
+ self.estimator.cv = [(train_indice, test_indice)]
311
+ self.estimator.fit(**self.args)
312
+ binary_cv_results = None
313
+ with io.BytesIO() as f:
314
+ cp.dump(self.estimator.cv_results_, f)
315
+ f.seek(0)
316
+ binary_cv_results = f.getvalue().hex()
317
+ yield (binary_cv_results,)
318
+
319
+ def end_partition(self) -> None:
320
+ ...
321
+
322
+ session.udtf.register(
323
+ SearchCV,
324
+ output_schema=StructType([StructField("CV_RESULTS", StringType())]),
325
+ input_types=[IntegerType(), IntegerType()],
326
+ name=random_udtf_name,
327
+ packages=required_deps, # type: ignore[arg-type]
328
+ replace=True,
329
+ is_permanent=False,
330
+ imports=imports, # type: ignore[arg-type]
331
+ statement_params=udtf_statement_params,
332
+ )
333
+
334
+ HP_TUNING = F.table_function(random_udtf_name)
335
+
336
+ idx_length = int(indices_len)
337
+ params_length = len(param_grid)
338
+ idxs = [i for i in range(idx_length)]
339
+ param_indices, training_indices = [], []
340
+ for param_idx, cv_idx in product([param_index for param_index in range(params_length)], idxs):
341
+ param_indices.append(param_idx)
342
+ training_indices.append(cv_idx)
343
+
344
+ pd_df = pd.DataFrame(
345
+ {
346
+ "PARAMS": param_indices,
347
+ "TRAIN_IND": training_indices,
348
+ "PARAM_INDEX": [i for i in range(idx_length * params_length)],
349
+ }
350
+ )
351
+ df = session.create_dataframe(pd_df)
352
+ results = df.select(
353
+ F.cast(df["PARAM_INDEX"], IntegerType()).as_("PARAM_INDEX"),
354
+ (HP_TUNING(df["PARAMS"], df["TRAIN_IND"]).over(partition_by=df["PARAM_INDEX"])),
355
+ )
356
+
357
+ # cv_result maintains the original order
358
+ multimetric = False
359
+ cv_results_ = dict()
360
+ scorers = set()
361
+ for i, val in enumerate(results.select("CV_RESULTS").sort(col("PARAM_INDEX")).collect()):
362
+ # retrieved string had one more double quote in the front and end of the string.
363
+ # use [1:-1] to remove the extra double quotes
364
+ hex_str = bytes.fromhex(val[0])
365
+ with io.BytesIO(hex_str) as f_reload:
366
+ each_cv_result = cp.load(f_reload)
367
+ for k, v in each_cv_result.items():
368
+ cur_cv = i % idx_length
369
+ key = k
370
+ if "split0_test_" in k:
371
+ # For multi-metric evaluation, the scores for all the scorers are available in the
372
+ # cv_results_ dict at the keys ending with that scorer’s name ('_<scorer_name>')
373
+ # instead of '_score'.
374
+ scorers.add(k[len("split0_test_") :])
375
+ key = k.replace("split0_test", f"split{cur_cv}_test")
376
+ elif k.startswith("param"):
377
+ if cur_cv != 0:
378
+ key = False
379
+ if key:
380
+ if key not in cv_results_:
381
+ cv_results_[key] = v
382
+ else:
383
+ cv_results_[key] = np.concatenate([cv_results_[key], v])
384
+
385
+ multimetric = len(scorers) > 1
386
+ # Use numpy to re-calculate all the information in cv_results_ again
387
+ # Generally speaking, reshape all the results into the (scorers+2, idx_length, params_length) shape,
388
+ # and average them by the idx_length;
389
+ # idx_length is the number of cv folds; params_length is the number of parameter combinations
390
+ scores = [
391
+ np.reshape(
392
+ np.concatenate([cv_results_[f"split{cur_cv}_test_{score}"] for cur_cv in range(idx_length)]),
393
+ (idx_length, -1),
394
+ )
395
+ for score in scorers
396
+ ]
397
+
398
+ fit_score_test_matrix = np.stack(
399
+ [
400
+ np.reshape(cv_results_["mean_fit_time"], (idx_length, -1)),
401
+ np.reshape(cv_results_["mean_score_time"], (idx_length, -1)),
402
+ ]
403
+ + scores
404
+ )
405
+
406
+ mean_fit_score_test_matrix = np.mean(fit_score_test_matrix, axis=1)
407
+ std_fit_score_test_matrix = np.std(fit_score_test_matrix, axis=1)
408
+ cv_results_["std_fit_time"] = std_fit_score_test_matrix[0]
409
+ cv_results_["mean_fit_time"] = mean_fit_score_test_matrix[0]
410
+ cv_results_["std_score_time"] = std_fit_score_test_matrix[1]
411
+ cv_results_["mean_score_time"] = mean_fit_score_test_matrix[1]
412
+ for idx, score in enumerate(scorers):
413
+ cv_results_[f"std_test_{score}"] = std_fit_score_test_matrix[idx + 2]
414
+ cv_results_[f"mean_test_{score}"] = mean_fit_score_test_matrix[idx + 2]
415
+ # re-compute the ranking again with mean_test_<score>.
416
+ cv_results_[f"rank_test_{score}"] = rankdata(-cv_results_[f"mean_test_{score}"], method="min")
417
+ # The best param is the highest ranking (which is 1) and we choose the first time ranking 1 appeared.
418
+ # If all scores are `nan`, `rankdata` will also produce an array of `nan` values.
419
+ # In that case, default to first index.
420
+ best_param_index = (
421
+ np.where(cv_results_[f"rank_test_{score}"] == 1)[0][0]
422
+ if not np.isnan(cv_results_[f"rank_test_{score}"]).all()
423
+ else 0
424
+ )
425
+
426
+ estimator.cv_results_ = cv_results_
427
+ estimator.multimetric_ = multimetric
428
+
429
+ # Reconstruct the sklearn estimator.
430
+ refit_metric = "score"
431
+ if callable(estimator.scoring):
432
+ scorers = estimator.scoring
433
+ elif estimator.scoring is None or isinstance(estimator.scoring, str):
434
+ scorers = check_scoring(estimator.estimator, estimator.scoring)
435
+ else:
436
+ scorers = _check_multimetric_scoring(estimator.estimator, estimator.scoring)
437
+ estimator._check_refit_for_multimetric(scorers)
438
+ refit_metric = original_refit
439
+
440
+ estimator.scorer_ = scorers
441
+
442
+ # check refit_metric now for a callabe scorer that is multimetric
443
+ if callable(estimator.scoring) and estimator.multimetric_:
444
+ refit_metric = original_refit
445
+
446
+ # For multi-metric evaluation, store the best_index_, best_params_ and
447
+ # best_score_ iff refit is one of the scorer names
448
+ # In single metric evaluation, refit_metric is "score"
449
+ if original_refit or not estimator.multimetric_:
450
+ estimator.best_index_ = estimator._select_best_index(original_refit, refit_metric, cv_results_)
451
+ if not callable(original_refit):
452
+ # With a non-custom callable, we can select the best score
453
+ # based on the best index
454
+ estimator.best_score_ = cv_results_[f"mean_test_{refit_metric}"][estimator.best_index_]
455
+ estimator.best_params_ = cv_results_["params"][best_param_index]
456
+
457
+ if original_refit:
458
+ estimator.best_estimator_ = clone(estimator.estimator).set_params(
459
+ **clone(estimator.best_params_, safe=False)
460
+ )
461
+
462
+ # Let the sproc use all cores to refit.
463
+ estimator.n_jobs = -1 if not estimator.n_jobs else estimator.n_jobs
464
+
465
+ # process the input as args
466
+ argspec = inspect.getfullargspec(estimator.fit)
467
+ args = {"X": X}
468
+ if label_cols:
469
+ label_arg_name = "Y" if "Y" in argspec.args else "y"
470
+ args[label_arg_name] = y
471
+ if sample_weight_col is not None and "sample_weight" in argspec.args:
472
+ args["sample_weight"] = df[sample_weight_col].squeeze()
473
+ estimator.refit = original_refit
474
+ refit_start_time = time.time()
475
+ estimator.best_estimator_.fit(**args)
476
+ refit_end_time = time.time()
477
+ estimator.refit_time_ = refit_end_time - refit_start_time
478
+
479
+ if hasattr(estimator.best_estimator_, "feature_names_in_"):
480
+ estimator.feature_names_in_ = estimator.best_estimator_.feature_names_in_
481
+
482
+ local_result_file_name = get_temp_file_path()
483
+
484
+ with open(local_result_file_name, mode="w+b") as local_result_file_obj:
485
+ cp.dump(estimator, local_result_file_obj)
486
+
487
+ session.file.put(
488
+ local_result_file_name,
489
+ temp_stage_name,
490
+ auto_compress=False,
491
+ overwrite=True,
492
+ )
493
+
494
+ # Note: you can add something like + "|" + str(df) to the return string
495
+ # to pass debug information to the caller.
496
+ return str(os.path.basename(local_result_file_name))
497
+
498
+ sproc_export_file_name = _distributed_search(
499
+ session,
500
+ imports,
501
+ stage_estimator_file_name,
502
+ input_cols,
503
+ label_cols,
504
+ )
505
+
506
+ local_estimator_path = get_temp_file_path()
507
+ session.file.get(
508
+ posixpath.join(temp_stage_name, sproc_export_file_name),
509
+ local_estimator_path,
510
+ )
511
+
512
+ with open(os.path.join(local_estimator_path, sproc_export_file_name), mode="r+b") as result_file_obj:
513
+ fit_estimator = cp.load(result_file_obj)
514
+
515
+ cleanup_temp_files([local_estimator_path])
516
+
517
+ return fit_estimator
518
+
519
+ def train(self) -> object:
520
+ """
521
+ Runs hyper parameter optimization by distributing the tasks across warehouse.
522
+
523
+ Returns:
524
+ Trained model
525
+ """
526
+ model_spec = ModelSpecificationsBuilder.build(model=self.estimator)
527
+ assert isinstance(self.estimator, model_selection.GridSearchCV) or isinstance(
528
+ self.estimator, model_selection.RandomizedSearchCV
529
+ )
530
+ if hasattr(self.estimator.estimator, "n_jobs") and self.estimator.estimator.n_jobs in [
531
+ None,
532
+ -1,
533
+ ]:
534
+ self.estimator.estimator.n_jobs = DEFAULT_UDTF_NJOBS
535
+
536
+ if isinstance(self.estimator, model_selection.GridSearchCV):
537
+ param_grid = model_selection.ParameterGrid(self.estimator.param_grid)
538
+ elif isinstance(self.estimator, model_selection.RandomizedSearchCV):
539
+ param_grid = model_selection.ParameterSampler(
540
+ self.estimator.param_distributions,
541
+ n_iter=self.estimator.n_iter,
542
+ random_state=self.estimator.random_state,
543
+ )
544
+ return self.fit_search_snowpark(
545
+ param_grid=param_grid,
546
+ dataset=self.dataset,
547
+ session=self.session,
548
+ estimator=self.estimator,
549
+ dependencies=model_spec.pkgDependencies,
550
+ udf_imports=["sklearn"],
551
+ input_cols=self.input_cols,
552
+ label_cols=self.label_cols,
553
+ sample_weight_col=self.sample_weight_col,
554
+ )
@@ -1,35 +1,12 @@
1
- from typing import List, Optional, Protocol, Union
1
+ from typing import List, Optional, Protocol
2
2
 
3
3
  import pandas as pd
4
- from sklearn import model_selection
5
4
 
6
5
  from snowflake.snowpark import DataFrame, Session
7
6
 
8
7
 
9
8
  # TODO: Add more specific entities to type hint estimators instead of using `object`.
10
9
  class FitPredictHandlers(Protocol):
11
- def fit_snowpark(
12
- self,
13
- dataset: DataFrame,
14
- session: Session,
15
- estimator: object,
16
- dependencies: List[str],
17
- input_cols: List[str],
18
- label_cols: List[str],
19
- sample_weight_col: Optional[str],
20
- ) -> object:
21
- raise NotImplementedError
22
-
23
- def fit_pandas(
24
- self,
25
- dataset: pd.DataFrame,
26
- estimator: object,
27
- input_cols: List[str],
28
- label_cols: Optional[List[str]],
29
- sample_weight_col: Optional[str],
30
- ) -> object:
31
- raise NotImplementedError
32
-
33
10
  def batch_inference(
34
11
  self,
35
12
  dataset: DataFrame,
@@ -70,28 +47,6 @@ class FitPredictHandlers(Protocol):
70
47
 
71
48
  # TODO: Add more specific entities to type hint estimators instead of using `object`.
72
49
  class CVHandlers(Protocol):
73
- def fit_snowpark(
74
- self,
75
- dataset: DataFrame,
76
- session: Session,
77
- estimator: object,
78
- dependencies: List[str],
79
- input_cols: List[str],
80
- label_cols: List[str],
81
- sample_weight_col: Optional[str],
82
- ) -> object:
83
- raise NotImplementedError
84
-
85
- def fit_pandas(
86
- self,
87
- dataset: pd.DataFrame,
88
- estimator: object,
89
- input_cols: List[str],
90
- label_cols: Optional[List[str]],
91
- sample_weight_col: Optional[str],
92
- ) -> object:
93
- raise NotImplementedError
94
-
95
50
  def batch_inference(
96
51
  self,
97
52
  dataset: DataFrame,
@@ -128,17 +83,3 @@ class CVHandlers(Protocol):
128
83
  sample_weight_col: Optional[str],
129
84
  ) -> float:
130
85
  raise NotImplementedError
131
-
132
- def fit_search_snowpark(
133
- self,
134
- param_grid: Union[model_selection.ParameterGrid, model_selection.ParameterSampler],
135
- dataset: DataFrame,
136
- session: Session,
137
- estimator: Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV],
138
- dependencies: List[str],
139
- udf_imports: List[str],
140
- input_cols: List[str],
141
- label_cols: List[str],
142
- sample_weight_col: Optional[str],
143
- ) -> Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV]:
144
- raise NotImplementedError