snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ElasticNet(BaseTransformer):
|
57
58
|
r"""Linear regression with combined L1 and L2 priors as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.ElasticNet]
|
@@ -60,6 +61,51 @@ class ElasticNet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the penalty terms. Defaults to 1.0.
|
65
111
|
See the notes for the exact mathematical meaning of this
|
@@ -114,35 +160,6 @@ class ElasticNet(BaseTransformer):
|
|
114
160
|
rather than looping over features sequentially by default. This
|
115
161
|
(setting to 'random') often leads to significantly faster convergence
|
116
162
|
especially when tol is higher than 1e-4.
|
117
|
-
|
118
|
-
input_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that contain features.
|
120
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
121
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
122
|
-
considered input columns.
|
123
|
-
|
124
|
-
label_cols: Optional[Union[str, List[str]]]
|
125
|
-
A string or list of strings representing column names that contain labels.
|
126
|
-
This is a required param for estimators, as there is no way to infer these
|
127
|
-
columns. If this parameter is not specified, then object is fitted without
|
128
|
-
labels (like a transformer).
|
129
|
-
|
130
|
-
output_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that will store the
|
132
|
-
output of predict and transform operations. The length of output_cols must
|
133
|
-
match the expected number of output columns from the specific estimator or
|
134
|
-
transformer class used.
|
135
|
-
If this parameter is not specified, output column names are derived by
|
136
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
137
|
-
column names work for estimator's predict() method, but output_cols must
|
138
|
-
be set explicitly for transformers.
|
139
|
-
|
140
|
-
sample_weight_col: Optional[str]
|
141
|
-
A string representing the column name containing the sample weights.
|
142
|
-
This argument is only required when working with weighted datasets.
|
143
|
-
|
144
|
-
drop_input_cols: Optional[bool], default=False
|
145
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
146
163
|
"""
|
147
164
|
|
148
165
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -162,6 +179,7 @@ class ElasticNet(BaseTransformer):
|
|
162
179
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
163
180
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
164
181
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
165
183
|
drop_input_cols: Optional[bool] = False,
|
166
184
|
sample_weight_col: Optional[str] = None,
|
167
185
|
) -> None:
|
@@ -170,9 +188,10 @@ class ElasticNet(BaseTransformer):
|
|
170
188
|
self.set_input_cols(input_cols)
|
171
189
|
self.set_output_cols(output_cols)
|
172
190
|
self.set_label_cols(label_cols)
|
191
|
+
self.set_passthrough_cols(passthrough_cols)
|
173
192
|
self.set_drop_input_cols(drop_input_cols)
|
174
193
|
self.set_sample_weight_col(sample_weight_col)
|
175
|
-
deps = set(
|
194
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
176
195
|
|
177
196
|
self._deps = list(deps)
|
178
197
|
|
@@ -191,13 +210,14 @@ class ElasticNet(BaseTransformer):
|
|
191
210
|
args=init_args,
|
192
211
|
klass=sklearn.linear_model.ElasticNet
|
193
212
|
)
|
194
|
-
self._sklearn_object = sklearn.linear_model.ElasticNet(
|
213
|
+
self._sklearn_object: Any = sklearn.linear_model.ElasticNet(
|
195
214
|
**cleaned_up_init_args,
|
196
215
|
)
|
197
216
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
198
217
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
199
218
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
200
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
219
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
220
|
+
self._autogenerated = True
|
201
221
|
|
202
222
|
def _get_rand_id(self) -> str:
|
203
223
|
"""
|
@@ -208,24 +228,6 @@ class ElasticNet(BaseTransformer):
|
|
208
228
|
"""
|
209
229
|
return str(uuid4()).replace("-", "_").upper()
|
210
230
|
|
211
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
212
|
-
"""
|
213
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
214
|
-
|
215
|
-
Args:
|
216
|
-
dataset: Input dataset.
|
217
|
-
"""
|
218
|
-
if not self.input_cols:
|
219
|
-
cols = [
|
220
|
-
c for c in dataset.columns
|
221
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
222
|
-
]
|
223
|
-
self.set_input_cols(input_cols=cols)
|
224
|
-
|
225
|
-
if not self.output_cols:
|
226
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
227
|
-
self.set_output_cols(output_cols=cols)
|
228
|
-
|
229
231
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ElasticNet":
|
230
232
|
"""
|
231
233
|
Input columns setter.
|
@@ -271,54 +273,48 @@ class ElasticNet(BaseTransformer):
|
|
271
273
|
self
|
272
274
|
"""
|
273
275
|
self._infer_input_output_cols(dataset)
|
274
|
-
if isinstance(dataset,
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
self.
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
276
|
+
if isinstance(dataset, DataFrame):
|
277
|
+
session = dataset._session
|
278
|
+
assert session is not None # keep mypy happy
|
279
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
280
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
281
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
282
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
283
|
+
|
284
|
+
# Specify input columns so column pruning will be enforced
|
285
|
+
selected_cols = self._get_active_columns()
|
286
|
+
if len(selected_cols) > 0:
|
287
|
+
dataset = dataset.select(selected_cols)
|
288
|
+
|
289
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
290
|
+
|
291
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
292
|
+
if SNOWML_SPROC_ENV in os.environ:
|
293
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
294
|
+
project=_PROJECT,
|
295
|
+
subproject=_SUBPROJECT,
|
296
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
|
297
|
+
api_calls=[Session.call],
|
298
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
299
|
+
)
|
300
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
301
|
+
pd_df.columns = dataset.columns
|
302
|
+
dataset = pd_df
|
303
|
+
|
304
|
+
model_trainer = ModelTrainerBuilder.build(
|
305
|
+
estimator=self._sklearn_object,
|
306
|
+
dataset=dataset,
|
307
|
+
input_cols=self.input_cols,
|
308
|
+
label_cols=self.label_cols,
|
309
|
+
sample_weight_col=self.sample_weight_col,
|
310
|
+
autogenerated=self._autogenerated,
|
311
|
+
subproject=_SUBPROJECT
|
312
|
+
)
|
313
|
+
self._sklearn_object = model_trainer.train()
|
290
314
|
self._is_fitted = True
|
291
315
|
self._get_model_signatures(dataset)
|
292
316
|
return self
|
293
317
|
|
294
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
295
|
-
session = dataset._session
|
296
|
-
assert session is not None # keep mypy happy
|
297
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
-
|
302
|
-
# Specify input columns so column pruning will be enforced
|
303
|
-
selected_cols = self._get_active_columns()
|
304
|
-
if len(selected_cols) > 0:
|
305
|
-
dataset = dataset.select(selected_cols)
|
306
|
-
|
307
|
-
estimator = self._sklearn_object
|
308
|
-
assert estimator is not None # Keep mypy happy
|
309
|
-
|
310
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
311
|
-
|
312
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
313
|
-
dataset,
|
314
|
-
session,
|
315
|
-
estimator,
|
316
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
317
|
-
self.input_cols,
|
318
|
-
self.label_cols,
|
319
|
-
self.sample_weight_col,
|
320
|
-
)
|
321
|
-
|
322
318
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
323
319
|
if self._drop_input_cols:
|
324
320
|
return []
|
@@ -506,11 +502,6 @@ class ElasticNet(BaseTransformer):
|
|
506
502
|
subproject=_SUBPROJECT,
|
507
503
|
custom_tags=dict([("autogen", True)]),
|
508
504
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
505
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
506
|
"""Predict using the linear model
|
516
507
|
For more details on this function, see [sklearn.linear_model.ElasticNet.predict]
|
@@ -564,11 +555,6 @@ class ElasticNet(BaseTransformer):
|
|
564
555
|
subproject=_SUBPROJECT,
|
565
556
|
custom_tags=dict([("autogen", True)]),
|
566
557
|
)
|
567
|
-
@telemetry.add_stmt_params_to_df(
|
568
|
-
project=_PROJECT,
|
569
|
-
subproject=_SUBPROJECT,
|
570
|
-
custom_tags=dict([("autogen", True)]),
|
571
|
-
)
|
572
558
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
573
559
|
"""Method not supported for this class.
|
574
560
|
|
@@ -625,7 +611,8 @@ class ElasticNet(BaseTransformer):
|
|
625
611
|
if False:
|
626
612
|
self.fit(dataset)
|
627
613
|
assert self._sklearn_object is not None
|
628
|
-
|
614
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
615
|
+
return labels
|
629
616
|
else:
|
630
617
|
raise NotImplementedError
|
631
618
|
|
@@ -661,6 +648,7 @@ class ElasticNet(BaseTransformer):
|
|
661
648
|
output_cols = []
|
662
649
|
|
663
650
|
# Make sure column names are valid snowflake identifiers.
|
651
|
+
assert output_cols is not None # Make MyPy happy
|
664
652
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
665
653
|
|
666
654
|
return rv
|
@@ -671,11 +659,6 @@ class ElasticNet(BaseTransformer):
|
|
671
659
|
subproject=_SUBPROJECT,
|
672
660
|
custom_tags=dict([("autogen", True)]),
|
673
661
|
)
|
674
|
-
@telemetry.add_stmt_params_to_df(
|
675
|
-
project=_PROJECT,
|
676
|
-
subproject=_SUBPROJECT,
|
677
|
-
custom_tags=dict([("autogen", True)]),
|
678
|
-
)
|
679
662
|
def predict_proba(
|
680
663
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
681
664
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -716,11 +699,6 @@ class ElasticNet(BaseTransformer):
|
|
716
699
|
subproject=_SUBPROJECT,
|
717
700
|
custom_tags=dict([("autogen", True)]),
|
718
701
|
)
|
719
|
-
@telemetry.add_stmt_params_to_df(
|
720
|
-
project=_PROJECT,
|
721
|
-
subproject=_SUBPROJECT,
|
722
|
-
custom_tags=dict([("autogen", True)]),
|
723
|
-
)
|
724
702
|
def predict_log_proba(
|
725
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
726
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -757,16 +735,6 @@ class ElasticNet(BaseTransformer):
|
|
757
735
|
return output_df
|
758
736
|
|
759
737
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
760
|
-
@telemetry.send_api_usage_telemetry(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
|
-
@telemetry.add_stmt_params_to_df(
|
766
|
-
project=_PROJECT,
|
767
|
-
subproject=_SUBPROJECT,
|
768
|
-
custom_tags=dict([("autogen", True)]),
|
769
|
-
)
|
770
738
|
def decision_function(
|
771
739
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
772
740
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -867,11 +835,6 @@ class ElasticNet(BaseTransformer):
|
|
867
835
|
subproject=_SUBPROJECT,
|
868
836
|
custom_tags=dict([("autogen", True)]),
|
869
837
|
)
|
870
|
-
@telemetry.add_stmt_params_to_df(
|
871
|
-
project=_PROJECT,
|
872
|
-
subproject=_SUBPROJECT,
|
873
|
-
custom_tags=dict([("autogen", True)]),
|
874
|
-
)
|
875
838
|
def kneighbors(
|
876
839
|
self,
|
877
840
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -931,18 +894,28 @@ class ElasticNet(BaseTransformer):
|
|
931
894
|
# For classifier, the type of predict is the same as the type of label
|
932
895
|
if self._sklearn_object._estimator_type == 'classifier':
|
933
896
|
# label columns is the desired type for output
|
934
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
897
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
935
898
|
# rename the output columns
|
936
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
899
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
937
900
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
938
901
|
([] if self._drop_input_cols else inputs)
|
939
902
|
+ outputs)
|
903
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
904
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
905
|
+
# Clusterer returns int64 cluster labels.
|
906
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
907
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
908
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
909
|
+
([] if self._drop_input_cols else inputs)
|
910
|
+
+ outputs)
|
911
|
+
|
940
912
|
# For regressor, the type of predict is float64
|
941
913
|
elif self._sklearn_object._estimator_type == 'regressor':
|
942
914
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
943
915
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
944
916
|
([] if self._drop_input_cols else inputs)
|
945
917
|
+ outputs)
|
918
|
+
|
946
919
|
for prob_func in PROB_FUNCTIONS:
|
947
920
|
if hasattr(self, prob_func):
|
948
921
|
output_cols_prefix: str = f"{prob_func}_"
|