snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ElasticNet(BaseTransformer):
57
58
  r"""Linear regression with combined L1 and L2 priors as regularizer
58
59
  For more details on this class, see [sklearn.linear_model.ElasticNet]
@@ -60,6 +61,51 @@ class ElasticNet(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float, default=1.0
64
110
  Constant that multiplies the penalty terms. Defaults to 1.0.
65
111
  See the notes for the exact mathematical meaning of this
@@ -114,35 +160,6 @@ class ElasticNet(BaseTransformer):
114
160
  rather than looping over features sequentially by default. This
115
161
  (setting to 'random') often leads to significantly faster convergence
116
162
  especially when tol is higher than 1e-4.
117
-
118
- input_cols: Optional[Union[str, List[str]]]
119
- A string or list of strings representing column names that contain features.
120
- If this parameter is not specified, all columns in the input DataFrame except
121
- the columns specified by label_cols and sample_weight_col parameters are
122
- considered input columns.
123
-
124
- label_cols: Optional[Union[str, List[str]]]
125
- A string or list of strings representing column names that contain labels.
126
- This is a required param for estimators, as there is no way to infer these
127
- columns. If this parameter is not specified, then object is fitted without
128
- labels (like a transformer).
129
-
130
- output_cols: Optional[Union[str, List[str]]]
131
- A string or list of strings representing column names that will store the
132
- output of predict and transform operations. The length of output_cols must
133
- match the expected number of output columns from the specific estimator or
134
- transformer class used.
135
- If this parameter is not specified, output column names are derived by
136
- adding an OUTPUT_ prefix to the label column names. These inferred output
137
- column names work for estimator's predict() method, but output_cols must
138
- be set explicitly for transformers.
139
-
140
- sample_weight_col: Optional[str]
141
- A string representing the column name containing the sample weights.
142
- This argument is only required when working with weighted datasets.
143
-
144
- drop_input_cols: Optional[bool], default=False
145
- If set, the response of predict(), transform() methods will not contain input columns.
146
163
  """
147
164
 
148
165
  def __init__( # type: ignore[no-untyped-def]
@@ -162,6 +179,7 @@ class ElasticNet(BaseTransformer):
162
179
  input_cols: Optional[Union[str, Iterable[str]]] = None,
163
180
  output_cols: Optional[Union[str, Iterable[str]]] = None,
164
181
  label_cols: Optional[Union[str, Iterable[str]]] = None,
182
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
165
183
  drop_input_cols: Optional[bool] = False,
166
184
  sample_weight_col: Optional[str] = None,
167
185
  ) -> None:
@@ -170,9 +188,10 @@ class ElasticNet(BaseTransformer):
170
188
  self.set_input_cols(input_cols)
171
189
  self.set_output_cols(output_cols)
172
190
  self.set_label_cols(label_cols)
191
+ self.set_passthrough_cols(passthrough_cols)
173
192
  self.set_drop_input_cols(drop_input_cols)
174
193
  self.set_sample_weight_col(sample_weight_col)
175
- deps = set(SklearnWrapperProvider().dependencies)
194
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
176
195
 
177
196
  self._deps = list(deps)
178
197
 
@@ -191,13 +210,14 @@ class ElasticNet(BaseTransformer):
191
210
  args=init_args,
192
211
  klass=sklearn.linear_model.ElasticNet
193
212
  )
194
- self._sklearn_object = sklearn.linear_model.ElasticNet(
213
+ self._sklearn_object: Any = sklearn.linear_model.ElasticNet(
195
214
  **cleaned_up_init_args,
196
215
  )
197
216
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
198
217
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
199
218
  self._snowpark_cols: Optional[List[str]] = self.input_cols
200
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
219
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
220
+ self._autogenerated = True
201
221
 
202
222
  def _get_rand_id(self) -> str:
203
223
  """
@@ -208,24 +228,6 @@ class ElasticNet(BaseTransformer):
208
228
  """
209
229
  return str(uuid4()).replace("-", "_").upper()
210
230
 
211
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
212
- """
213
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
214
-
215
- Args:
216
- dataset: Input dataset.
217
- """
218
- if not self.input_cols:
219
- cols = [
220
- c for c in dataset.columns
221
- if c not in self.get_label_cols() and c != self.sample_weight_col
222
- ]
223
- self.set_input_cols(input_cols=cols)
224
-
225
- if not self.output_cols:
226
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
227
- self.set_output_cols(output_cols=cols)
228
-
229
231
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ElasticNet":
230
232
  """
231
233
  Input columns setter.
@@ -271,54 +273,48 @@ class ElasticNet(BaseTransformer):
271
273
  self
272
274
  """
273
275
  self._infer_input_output_cols(dataset)
274
- if isinstance(dataset, pd.DataFrame):
275
- assert self._sklearn_object is not None # keep mypy happy
276
- self._sklearn_object = self._handlers.fit_pandas(
277
- dataset,
278
- self._sklearn_object,
279
- self.input_cols,
280
- self.label_cols,
281
- self.sample_weight_col
282
- )
283
- elif isinstance(dataset, DataFrame):
284
- self._fit_snowpark(dataset)
285
- else:
286
- raise TypeError(
287
- f"Unexpected dataset type: {type(dataset)}."
288
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
289
- )
276
+ if isinstance(dataset, DataFrame):
277
+ session = dataset._session
278
+ assert session is not None # keep mypy happy
279
+ # Validate that key package version in user workspace are supported in snowflake conda channel
280
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
281
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
282
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
283
+
284
+ # Specify input columns so column pruning will be enforced
285
+ selected_cols = self._get_active_columns()
286
+ if len(selected_cols) > 0:
287
+ dataset = dataset.select(selected_cols)
288
+
289
+ self._snowpark_cols = dataset.select(self.input_cols).columns
290
+
291
+ # If we are already in a stored procedure, no need to kick off another one.
292
+ if SNOWML_SPROC_ENV in os.environ:
293
+ statement_params = telemetry.get_function_usage_statement_params(
294
+ project=_PROJECT,
295
+ subproject=_SUBPROJECT,
296
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
297
+ api_calls=[Session.call],
298
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
299
+ )
300
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
301
+ pd_df.columns = dataset.columns
302
+ dataset = pd_df
303
+
304
+ model_trainer = ModelTrainerBuilder.build(
305
+ estimator=self._sklearn_object,
306
+ dataset=dataset,
307
+ input_cols=self.input_cols,
308
+ label_cols=self.label_cols,
309
+ sample_weight_col=self.sample_weight_col,
310
+ autogenerated=self._autogenerated,
311
+ subproject=_SUBPROJECT
312
+ )
313
+ self._sklearn_object = model_trainer.train()
290
314
  self._is_fitted = True
291
315
  self._get_model_signatures(dataset)
292
316
  return self
293
317
 
294
- def _fit_snowpark(self, dataset: DataFrame) -> None:
295
- session = dataset._session
296
- assert session is not None # keep mypy happy
297
- # Validate that key package version in user workspace are supported in snowflake conda channel
298
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
299
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
300
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
301
-
302
- # Specify input columns so column pruning will be enforced
303
- selected_cols = self._get_active_columns()
304
- if len(selected_cols) > 0:
305
- dataset = dataset.select(selected_cols)
306
-
307
- estimator = self._sklearn_object
308
- assert estimator is not None # Keep mypy happy
309
-
310
- self._snowpark_cols = dataset.select(self.input_cols).columns
311
-
312
- self._sklearn_object = self._handlers.fit_snowpark(
313
- dataset,
314
- session,
315
- estimator,
316
- ["snowflake-snowpark-python"] + self._get_dependencies(),
317
- self.input_cols,
318
- self.label_cols,
319
- self.sample_weight_col,
320
- )
321
-
322
318
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
323
319
  if self._drop_input_cols:
324
320
  return []
@@ -506,11 +502,6 @@ class ElasticNet(BaseTransformer):
506
502
  subproject=_SUBPROJECT,
507
503
  custom_tags=dict([("autogen", True)]),
508
504
  )
509
- @telemetry.add_stmt_params_to_df(
510
- project=_PROJECT,
511
- subproject=_SUBPROJECT,
512
- custom_tags=dict([("autogen", True)]),
513
- )
514
505
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
515
506
  """Predict using the linear model
516
507
  For more details on this function, see [sklearn.linear_model.ElasticNet.predict]
@@ -564,11 +555,6 @@ class ElasticNet(BaseTransformer):
564
555
  subproject=_SUBPROJECT,
565
556
  custom_tags=dict([("autogen", True)]),
566
557
  )
567
- @telemetry.add_stmt_params_to_df(
568
- project=_PROJECT,
569
- subproject=_SUBPROJECT,
570
- custom_tags=dict([("autogen", True)]),
571
- )
572
558
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
573
559
  """Method not supported for this class.
574
560
 
@@ -625,7 +611,8 @@ class ElasticNet(BaseTransformer):
625
611
  if False:
626
612
  self.fit(dataset)
627
613
  assert self._sklearn_object is not None
628
- return self._sklearn_object.labels_
614
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
615
+ return labels
629
616
  else:
630
617
  raise NotImplementedError
631
618
 
@@ -661,6 +648,7 @@ class ElasticNet(BaseTransformer):
661
648
  output_cols = []
662
649
 
663
650
  # Make sure column names are valid snowflake identifiers.
651
+ assert output_cols is not None # Make MyPy happy
664
652
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
665
653
 
666
654
  return rv
@@ -671,11 +659,6 @@ class ElasticNet(BaseTransformer):
671
659
  subproject=_SUBPROJECT,
672
660
  custom_tags=dict([("autogen", True)]),
673
661
  )
674
- @telemetry.add_stmt_params_to_df(
675
- project=_PROJECT,
676
- subproject=_SUBPROJECT,
677
- custom_tags=dict([("autogen", True)]),
678
- )
679
662
  def predict_proba(
680
663
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
681
664
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -716,11 +699,6 @@ class ElasticNet(BaseTransformer):
716
699
  subproject=_SUBPROJECT,
717
700
  custom_tags=dict([("autogen", True)]),
718
701
  )
719
- @telemetry.add_stmt_params_to_df(
720
- project=_PROJECT,
721
- subproject=_SUBPROJECT,
722
- custom_tags=dict([("autogen", True)]),
723
- )
724
702
  def predict_log_proba(
725
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
726
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -757,16 +735,6 @@ class ElasticNet(BaseTransformer):
757
735
  return output_df
758
736
 
759
737
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
760
- @telemetry.send_api_usage_telemetry(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
- @telemetry.add_stmt_params_to_df(
766
- project=_PROJECT,
767
- subproject=_SUBPROJECT,
768
- custom_tags=dict([("autogen", True)]),
769
- )
770
738
  def decision_function(
771
739
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
772
740
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -867,11 +835,6 @@ class ElasticNet(BaseTransformer):
867
835
  subproject=_SUBPROJECT,
868
836
  custom_tags=dict([("autogen", True)]),
869
837
  )
870
- @telemetry.add_stmt_params_to_df(
871
- project=_PROJECT,
872
- subproject=_SUBPROJECT,
873
- custom_tags=dict([("autogen", True)]),
874
- )
875
838
  def kneighbors(
876
839
  self,
877
840
  dataset: Union[DataFrame, pd.DataFrame],
@@ -931,18 +894,28 @@ class ElasticNet(BaseTransformer):
931
894
  # For classifier, the type of predict is the same as the type of label
932
895
  if self._sklearn_object._estimator_type == 'classifier':
933
896
  # label columns is the desired type for output
934
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
897
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
935
898
  # rename the output columns
936
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
899
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
937
900
  self._model_signature_dict["predict"] = ModelSignature(inputs,
938
901
  ([] if self._drop_input_cols else inputs)
939
902
  + outputs)
903
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
904
+ # For outlier models, returns -1 for outliers and 1 for inliers.
905
+ # Clusterer returns int64 cluster labels.
906
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
907
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
908
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
909
+ ([] if self._drop_input_cols else inputs)
910
+ + outputs)
911
+
940
912
  # For regressor, the type of predict is float64
941
913
  elif self._sklearn_object._estimator_type == 'regressor':
942
914
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
943
915
  self._model_signature_dict["predict"] = ModelSignature(inputs,
944
916
  ([] if self._drop_input_cols else inputs)
945
917
  + outputs)
918
+
946
919
  for prob_func in PROB_FUNCTIONS:
947
920
  if hasattr(self, prob_func):
948
921
  output_cols_prefix: str = f"{prob_func}_"