snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianNB(BaseTransformer):
57
58
  r"""Gaussian Naive Bayes (GaussianNB)
58
59
  For more details on this class, see [sklearn.naive_bayes.GaussianNB]
@@ -60,42 +61,58 @@ class GaussianNB(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- priors: array-like of shape (n_classes,), default=None
64
- Prior probabilities of the classes. If specified, the priors are not
65
- adjusted according to the data.
66
-
67
- var_smoothing: float, default=1e-9
68
- Portion of the largest variance of all features that is added to
69
- variances for calculation stability.
70
64
 
71
65
  input_cols: Optional[Union[str, List[str]]]
72
66
  A string or list of strings representing column names that contain features.
73
67
  If this parameter is not specified, all columns in the input DataFrame except
74
- the columns specified by label_cols and sample_weight_col parameters are
75
- considered input columns.
76
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
77
72
  label_cols: Optional[Union[str, List[str]]]
78
73
  A string or list of strings representing column names that contain labels.
79
- This is a required param for estimators, as there is no way to infer these
80
- columns. If this parameter is not specified, then object is fitted without
81
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
82
76
 
83
77
  output_cols: Optional[Union[str, List[str]]]
84
78
  A string or list of strings representing column names that will store the
85
79
  output of predict and transform operations. The length of output_cols must
86
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
87
81
  transformer class used.
88
- If this parameter is not specified, output column names are derived by
89
- adding an OUTPUT_ prefix to the label column names. These inferred output
90
- column names work for estimator's predict() method, but output_cols must
91
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
92
91
 
93
92
  sample_weight_col: Optional[str]
94
93
  A string representing the column name containing the sample weights.
95
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
96
105
 
97
106
  drop_input_cols: Optional[bool], default=False
98
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ priors: array-like of shape (n_classes,), default=None
110
+ Prior probabilities of the classes. If specified, the priors are not
111
+ adjusted according to the data.
112
+
113
+ var_smoothing: float, default=1e-9
114
+ Portion of the largest variance of all features that is added to
115
+ variances for calculation stability.
99
116
  """
100
117
 
101
118
  def __init__( # type: ignore[no-untyped-def]
@@ -106,6 +123,7 @@ class GaussianNB(BaseTransformer):
106
123
  input_cols: Optional[Union[str, Iterable[str]]] = None,
107
124
  output_cols: Optional[Union[str, Iterable[str]]] = None,
108
125
  label_cols: Optional[Union[str, Iterable[str]]] = None,
126
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
109
127
  drop_input_cols: Optional[bool] = False,
110
128
  sample_weight_col: Optional[str] = None,
111
129
  ) -> None:
@@ -114,9 +132,10 @@ class GaussianNB(BaseTransformer):
114
132
  self.set_input_cols(input_cols)
115
133
  self.set_output_cols(output_cols)
116
134
  self.set_label_cols(label_cols)
135
+ self.set_passthrough_cols(passthrough_cols)
117
136
  self.set_drop_input_cols(drop_input_cols)
118
137
  self.set_sample_weight_col(sample_weight_col)
119
- deps = set(SklearnWrapperProvider().dependencies)
138
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
120
139
 
121
140
  self._deps = list(deps)
122
141
 
@@ -126,13 +145,14 @@ class GaussianNB(BaseTransformer):
126
145
  args=init_args,
127
146
  klass=sklearn.naive_bayes.GaussianNB
128
147
  )
129
- self._sklearn_object = sklearn.naive_bayes.GaussianNB(
148
+ self._sklearn_object: Any = sklearn.naive_bayes.GaussianNB(
130
149
  **cleaned_up_init_args,
131
150
  )
132
151
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
133
152
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
134
153
  self._snowpark_cols: Optional[List[str]] = self.input_cols
135
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
154
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
155
+ self._autogenerated = True
136
156
 
137
157
  def _get_rand_id(self) -> str:
138
158
  """
@@ -143,24 +163,6 @@ class GaussianNB(BaseTransformer):
143
163
  """
144
164
  return str(uuid4()).replace("-", "_").upper()
145
165
 
146
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
147
- """
148
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
149
-
150
- Args:
151
- dataset: Input dataset.
152
- """
153
- if not self.input_cols:
154
- cols = [
155
- c for c in dataset.columns
156
- if c not in self.get_label_cols() and c != self.sample_weight_col
157
- ]
158
- self.set_input_cols(input_cols=cols)
159
-
160
- if not self.output_cols:
161
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
162
- self.set_output_cols(output_cols=cols)
163
-
164
166
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianNB":
165
167
  """
166
168
  Input columns setter.
@@ -206,54 +208,48 @@ class GaussianNB(BaseTransformer):
206
208
  self
207
209
  """
208
210
  self._infer_input_output_cols(dataset)
209
- if isinstance(dataset, pd.DataFrame):
210
- assert self._sklearn_object is not None # keep mypy happy
211
- self._sklearn_object = self._handlers.fit_pandas(
212
- dataset,
213
- self._sklearn_object,
214
- self.input_cols,
215
- self.label_cols,
216
- self.sample_weight_col
217
- )
218
- elif isinstance(dataset, DataFrame):
219
- self._fit_snowpark(dataset)
220
- else:
221
- raise TypeError(
222
- f"Unexpected dataset type: {type(dataset)}."
223
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
224
- )
211
+ if isinstance(dataset, DataFrame):
212
+ session = dataset._session
213
+ assert session is not None # keep mypy happy
214
+ # Validate that key package version in user workspace are supported in snowflake conda channel
215
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
216
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
217
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
218
+
219
+ # Specify input columns so column pruning will be enforced
220
+ selected_cols = self._get_active_columns()
221
+ if len(selected_cols) > 0:
222
+ dataset = dataset.select(selected_cols)
223
+
224
+ self._snowpark_cols = dataset.select(self.input_cols).columns
225
+
226
+ # If we are already in a stored procedure, no need to kick off another one.
227
+ if SNOWML_SPROC_ENV in os.environ:
228
+ statement_params = telemetry.get_function_usage_statement_params(
229
+ project=_PROJECT,
230
+ subproject=_SUBPROJECT,
231
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianNB.__class__.__name__),
232
+ api_calls=[Session.call],
233
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
234
+ )
235
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
236
+ pd_df.columns = dataset.columns
237
+ dataset = pd_df
238
+
239
+ model_trainer = ModelTrainerBuilder.build(
240
+ estimator=self._sklearn_object,
241
+ dataset=dataset,
242
+ input_cols=self.input_cols,
243
+ label_cols=self.label_cols,
244
+ sample_weight_col=self.sample_weight_col,
245
+ autogenerated=self._autogenerated,
246
+ subproject=_SUBPROJECT
247
+ )
248
+ self._sklearn_object = model_trainer.train()
225
249
  self._is_fitted = True
226
250
  self._get_model_signatures(dataset)
227
251
  return self
228
252
 
229
- def _fit_snowpark(self, dataset: DataFrame) -> None:
230
- session = dataset._session
231
- assert session is not None # keep mypy happy
232
- # Validate that key package version in user workspace are supported in snowflake conda channel
233
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
234
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
235
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
236
-
237
- # Specify input columns so column pruning will be enforced
238
- selected_cols = self._get_active_columns()
239
- if len(selected_cols) > 0:
240
- dataset = dataset.select(selected_cols)
241
-
242
- estimator = self._sklearn_object
243
- assert estimator is not None # Keep mypy happy
244
-
245
- self._snowpark_cols = dataset.select(self.input_cols).columns
246
-
247
- self._sklearn_object = self._handlers.fit_snowpark(
248
- dataset,
249
- session,
250
- estimator,
251
- ["snowflake-snowpark-python"] + self._get_dependencies(),
252
- self.input_cols,
253
- self.label_cols,
254
- self.sample_weight_col,
255
- )
256
-
257
253
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
258
254
  if self._drop_input_cols:
259
255
  return []
@@ -441,11 +437,6 @@ class GaussianNB(BaseTransformer):
441
437
  subproject=_SUBPROJECT,
442
438
  custom_tags=dict([("autogen", True)]),
443
439
  )
444
- @telemetry.add_stmt_params_to_df(
445
- project=_PROJECT,
446
- subproject=_SUBPROJECT,
447
- custom_tags=dict([("autogen", True)]),
448
- )
449
440
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
450
441
  """Perform classification on an array of test vectors X
451
442
  For more details on this function, see [sklearn.naive_bayes.GaussianNB.predict]
@@ -499,11 +490,6 @@ class GaussianNB(BaseTransformer):
499
490
  subproject=_SUBPROJECT,
500
491
  custom_tags=dict([("autogen", True)]),
501
492
  )
502
- @telemetry.add_stmt_params_to_df(
503
- project=_PROJECT,
504
- subproject=_SUBPROJECT,
505
- custom_tags=dict([("autogen", True)]),
506
- )
507
493
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
508
494
  """Method not supported for this class.
509
495
 
@@ -560,7 +546,8 @@ class GaussianNB(BaseTransformer):
560
546
  if False:
561
547
  self.fit(dataset)
562
548
  assert self._sklearn_object is not None
563
- return self._sklearn_object.labels_
549
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
550
+ return labels
564
551
  else:
565
552
  raise NotImplementedError
566
553
 
@@ -596,6 +583,7 @@ class GaussianNB(BaseTransformer):
596
583
  output_cols = []
597
584
 
598
585
  # Make sure column names are valid snowflake identifiers.
586
+ assert output_cols is not None # Make MyPy happy
599
587
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
600
588
 
601
589
  return rv
@@ -606,11 +594,6 @@ class GaussianNB(BaseTransformer):
606
594
  subproject=_SUBPROJECT,
607
595
  custom_tags=dict([("autogen", True)]),
608
596
  )
609
- @telemetry.add_stmt_params_to_df(
610
- project=_PROJECT,
611
- subproject=_SUBPROJECT,
612
- custom_tags=dict([("autogen", True)]),
613
- )
614
597
  def predict_proba(
615
598
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
616
599
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -653,11 +636,6 @@ class GaussianNB(BaseTransformer):
653
636
  subproject=_SUBPROJECT,
654
637
  custom_tags=dict([("autogen", True)]),
655
638
  )
656
- @telemetry.add_stmt_params_to_df(
657
- project=_PROJECT,
658
- subproject=_SUBPROJECT,
659
- custom_tags=dict([("autogen", True)]),
660
- )
661
639
  def predict_log_proba(
662
640
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
663
641
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -696,16 +674,6 @@ class GaussianNB(BaseTransformer):
696
674
  return output_df
697
675
 
698
676
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
699
- @telemetry.send_api_usage_telemetry(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
- @telemetry.add_stmt_params_to_df(
705
- project=_PROJECT,
706
- subproject=_SUBPROJECT,
707
- custom_tags=dict([("autogen", True)]),
708
- )
709
677
  def decision_function(
710
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
711
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -806,11 +774,6 @@ class GaussianNB(BaseTransformer):
806
774
  subproject=_SUBPROJECT,
807
775
  custom_tags=dict([("autogen", True)]),
808
776
  )
809
- @telemetry.add_stmt_params_to_df(
810
- project=_PROJECT,
811
- subproject=_SUBPROJECT,
812
- custom_tags=dict([("autogen", True)]),
813
- )
814
777
  def kneighbors(
815
778
  self,
816
779
  dataset: Union[DataFrame, pd.DataFrame],
@@ -870,18 +833,28 @@ class GaussianNB(BaseTransformer):
870
833
  # For classifier, the type of predict is the same as the type of label
871
834
  if self._sklearn_object._estimator_type == 'classifier':
872
835
  # label columns is the desired type for output
873
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
836
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
874
837
  # rename the output columns
875
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
838
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
876
839
  self._model_signature_dict["predict"] = ModelSignature(inputs,
877
840
  ([] if self._drop_input_cols else inputs)
878
841
  + outputs)
842
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
843
+ # For outlier models, returns -1 for outliers and 1 for inliers.
844
+ # Clusterer returns int64 cluster labels.
845
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
846
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
847
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
848
+ ([] if self._drop_input_cols else inputs)
849
+ + outputs)
850
+
879
851
  # For regressor, the type of predict is float64
880
852
  elif self._sklearn_object._estimator_type == 'regressor':
881
853
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
882
854
  self._model_signature_dict["predict"] = ModelSignature(inputs,
883
855
  ([] if self._drop_input_cols else inputs)
884
856
  + outputs)
857
+
885
858
  for prob_func in PROB_FUNCTIONS:
886
859
  if hasattr(self, prob_func):
887
860
  output_cols_prefix: str = f"{prob_func}_"