snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianNB(BaseTransformer):
|
57
58
|
r"""Gaussian Naive Bayes (GaussianNB)
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.GaussianNB]
|
@@ -60,42 +61,58 @@ class GaussianNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
priors: array-like of shape (n_classes,), default=None
|
64
|
-
Prior probabilities of the classes. If specified, the priors are not
|
65
|
-
adjusted according to the data.
|
66
|
-
|
67
|
-
var_smoothing: float, default=1e-9
|
68
|
-
Portion of the largest variance of all features that is added to
|
69
|
-
variances for calculation stability.
|
70
64
|
|
71
65
|
input_cols: Optional[Union[str, List[str]]]
|
72
66
|
A string or list of strings representing column names that contain features.
|
73
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
74
|
-
the columns specified by label_cols
|
75
|
-
considered input columns.
|
76
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
77
72
|
label_cols: Optional[Union[str, List[str]]]
|
78
73
|
A string or list of strings representing column names that contain labels.
|
79
|
-
|
80
|
-
|
81
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
82
76
|
|
83
77
|
output_cols: Optional[Union[str, List[str]]]
|
84
78
|
A string or list of strings representing column names that will store the
|
85
79
|
output of predict and transform operations. The length of output_cols must
|
86
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
87
81
|
transformer class used.
|
88
|
-
If this parameter
|
89
|
-
|
90
|
-
|
91
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
92
91
|
|
93
92
|
sample_weight_col: Optional[str]
|
94
93
|
A string representing the column name containing the sample weights.
|
95
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
96
105
|
|
97
106
|
drop_input_cols: Optional[bool], default=False
|
98
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
priors: array-like of shape (n_classes,), default=None
|
110
|
+
Prior probabilities of the classes. If specified, the priors are not
|
111
|
+
adjusted according to the data.
|
112
|
+
|
113
|
+
var_smoothing: float, default=1e-9
|
114
|
+
Portion of the largest variance of all features that is added to
|
115
|
+
variances for calculation stability.
|
99
116
|
"""
|
100
117
|
|
101
118
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -106,6 +123,7 @@ class GaussianNB(BaseTransformer):
|
|
106
123
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
107
124
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
108
125
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
126
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
109
127
|
drop_input_cols: Optional[bool] = False,
|
110
128
|
sample_weight_col: Optional[str] = None,
|
111
129
|
) -> None:
|
@@ -114,9 +132,10 @@ class GaussianNB(BaseTransformer):
|
|
114
132
|
self.set_input_cols(input_cols)
|
115
133
|
self.set_output_cols(output_cols)
|
116
134
|
self.set_label_cols(label_cols)
|
135
|
+
self.set_passthrough_cols(passthrough_cols)
|
117
136
|
self.set_drop_input_cols(drop_input_cols)
|
118
137
|
self.set_sample_weight_col(sample_weight_col)
|
119
|
-
deps = set(
|
138
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
120
139
|
|
121
140
|
self._deps = list(deps)
|
122
141
|
|
@@ -126,13 +145,14 @@ class GaussianNB(BaseTransformer):
|
|
126
145
|
args=init_args,
|
127
146
|
klass=sklearn.naive_bayes.GaussianNB
|
128
147
|
)
|
129
|
-
self._sklearn_object = sklearn.naive_bayes.GaussianNB(
|
148
|
+
self._sklearn_object: Any = sklearn.naive_bayes.GaussianNB(
|
130
149
|
**cleaned_up_init_args,
|
131
150
|
)
|
132
151
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
133
152
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
134
153
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
135
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
154
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
155
|
+
self._autogenerated = True
|
136
156
|
|
137
157
|
def _get_rand_id(self) -> str:
|
138
158
|
"""
|
@@ -143,24 +163,6 @@ class GaussianNB(BaseTransformer):
|
|
143
163
|
"""
|
144
164
|
return str(uuid4()).replace("-", "_").upper()
|
145
165
|
|
146
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
147
|
-
"""
|
148
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
149
|
-
|
150
|
-
Args:
|
151
|
-
dataset: Input dataset.
|
152
|
-
"""
|
153
|
-
if not self.input_cols:
|
154
|
-
cols = [
|
155
|
-
c for c in dataset.columns
|
156
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
157
|
-
]
|
158
|
-
self.set_input_cols(input_cols=cols)
|
159
|
-
|
160
|
-
if not self.output_cols:
|
161
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
162
|
-
self.set_output_cols(output_cols=cols)
|
163
|
-
|
164
166
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianNB":
|
165
167
|
"""
|
166
168
|
Input columns setter.
|
@@ -206,54 +208,48 @@ class GaussianNB(BaseTransformer):
|
|
206
208
|
self
|
207
209
|
"""
|
208
210
|
self._infer_input_output_cols(dataset)
|
209
|
-
if isinstance(dataset,
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
self.
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
211
|
+
if isinstance(dataset, DataFrame):
|
212
|
+
session = dataset._session
|
213
|
+
assert session is not None # keep mypy happy
|
214
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
215
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
216
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
217
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
218
|
+
|
219
|
+
# Specify input columns so column pruning will be enforced
|
220
|
+
selected_cols = self._get_active_columns()
|
221
|
+
if len(selected_cols) > 0:
|
222
|
+
dataset = dataset.select(selected_cols)
|
223
|
+
|
224
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
225
|
+
|
226
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
227
|
+
if SNOWML_SPROC_ENV in os.environ:
|
228
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
229
|
+
project=_PROJECT,
|
230
|
+
subproject=_SUBPROJECT,
|
231
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianNB.__class__.__name__),
|
232
|
+
api_calls=[Session.call],
|
233
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
234
|
+
)
|
235
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
236
|
+
pd_df.columns = dataset.columns
|
237
|
+
dataset = pd_df
|
238
|
+
|
239
|
+
model_trainer = ModelTrainerBuilder.build(
|
240
|
+
estimator=self._sklearn_object,
|
241
|
+
dataset=dataset,
|
242
|
+
input_cols=self.input_cols,
|
243
|
+
label_cols=self.label_cols,
|
244
|
+
sample_weight_col=self.sample_weight_col,
|
245
|
+
autogenerated=self._autogenerated,
|
246
|
+
subproject=_SUBPROJECT
|
247
|
+
)
|
248
|
+
self._sklearn_object = model_trainer.train()
|
225
249
|
self._is_fitted = True
|
226
250
|
self._get_model_signatures(dataset)
|
227
251
|
return self
|
228
252
|
|
229
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
230
|
-
session = dataset._session
|
231
|
-
assert session is not None # keep mypy happy
|
232
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
233
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
234
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
235
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
236
|
-
|
237
|
-
# Specify input columns so column pruning will be enforced
|
238
|
-
selected_cols = self._get_active_columns()
|
239
|
-
if len(selected_cols) > 0:
|
240
|
-
dataset = dataset.select(selected_cols)
|
241
|
-
|
242
|
-
estimator = self._sklearn_object
|
243
|
-
assert estimator is not None # Keep mypy happy
|
244
|
-
|
245
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
246
|
-
|
247
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
248
|
-
dataset,
|
249
|
-
session,
|
250
|
-
estimator,
|
251
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
252
|
-
self.input_cols,
|
253
|
-
self.label_cols,
|
254
|
-
self.sample_weight_col,
|
255
|
-
)
|
256
|
-
|
257
253
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
258
254
|
if self._drop_input_cols:
|
259
255
|
return []
|
@@ -441,11 +437,6 @@ class GaussianNB(BaseTransformer):
|
|
441
437
|
subproject=_SUBPROJECT,
|
442
438
|
custom_tags=dict([("autogen", True)]),
|
443
439
|
)
|
444
|
-
@telemetry.add_stmt_params_to_df(
|
445
|
-
project=_PROJECT,
|
446
|
-
subproject=_SUBPROJECT,
|
447
|
-
custom_tags=dict([("autogen", True)]),
|
448
|
-
)
|
449
440
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
450
441
|
"""Perform classification on an array of test vectors X
|
451
442
|
For more details on this function, see [sklearn.naive_bayes.GaussianNB.predict]
|
@@ -499,11 +490,6 @@ class GaussianNB(BaseTransformer):
|
|
499
490
|
subproject=_SUBPROJECT,
|
500
491
|
custom_tags=dict([("autogen", True)]),
|
501
492
|
)
|
502
|
-
@telemetry.add_stmt_params_to_df(
|
503
|
-
project=_PROJECT,
|
504
|
-
subproject=_SUBPROJECT,
|
505
|
-
custom_tags=dict([("autogen", True)]),
|
506
|
-
)
|
507
493
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
508
494
|
"""Method not supported for this class.
|
509
495
|
|
@@ -560,7 +546,8 @@ class GaussianNB(BaseTransformer):
|
|
560
546
|
if False:
|
561
547
|
self.fit(dataset)
|
562
548
|
assert self._sklearn_object is not None
|
563
|
-
|
549
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
550
|
+
return labels
|
564
551
|
else:
|
565
552
|
raise NotImplementedError
|
566
553
|
|
@@ -596,6 +583,7 @@ class GaussianNB(BaseTransformer):
|
|
596
583
|
output_cols = []
|
597
584
|
|
598
585
|
# Make sure column names are valid snowflake identifiers.
|
586
|
+
assert output_cols is not None # Make MyPy happy
|
599
587
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
600
588
|
|
601
589
|
return rv
|
@@ -606,11 +594,6 @@ class GaussianNB(BaseTransformer):
|
|
606
594
|
subproject=_SUBPROJECT,
|
607
595
|
custom_tags=dict([("autogen", True)]),
|
608
596
|
)
|
609
|
-
@telemetry.add_stmt_params_to_df(
|
610
|
-
project=_PROJECT,
|
611
|
-
subproject=_SUBPROJECT,
|
612
|
-
custom_tags=dict([("autogen", True)]),
|
613
|
-
)
|
614
597
|
def predict_proba(
|
615
598
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
616
599
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -653,11 +636,6 @@ class GaussianNB(BaseTransformer):
|
|
653
636
|
subproject=_SUBPROJECT,
|
654
637
|
custom_tags=dict([("autogen", True)]),
|
655
638
|
)
|
656
|
-
@telemetry.add_stmt_params_to_df(
|
657
|
-
project=_PROJECT,
|
658
|
-
subproject=_SUBPROJECT,
|
659
|
-
custom_tags=dict([("autogen", True)]),
|
660
|
-
)
|
661
639
|
def predict_log_proba(
|
662
640
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
663
641
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -696,16 +674,6 @@ class GaussianNB(BaseTransformer):
|
|
696
674
|
return output_df
|
697
675
|
|
698
676
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
699
|
-
@telemetry.send_api_usage_telemetry(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
|
-
@telemetry.add_stmt_params_to_df(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
677
|
def decision_function(
|
710
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
711
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -806,11 +774,6 @@ class GaussianNB(BaseTransformer):
|
|
806
774
|
subproject=_SUBPROJECT,
|
807
775
|
custom_tags=dict([("autogen", True)]),
|
808
776
|
)
|
809
|
-
@telemetry.add_stmt_params_to_df(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
777
|
def kneighbors(
|
815
778
|
self,
|
816
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -870,18 +833,28 @@ class GaussianNB(BaseTransformer):
|
|
870
833
|
# For classifier, the type of predict is the same as the type of label
|
871
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
872
835
|
# label columns is the desired type for output
|
873
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
874
837
|
# rename the output columns
|
875
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
876
839
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
877
840
|
([] if self._drop_input_cols else inputs)
|
878
841
|
+ outputs)
|
842
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
843
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
844
|
+
# Clusterer returns int64 cluster labels.
|
845
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
846
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
847
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
848
|
+
([] if self._drop_input_cols else inputs)
|
849
|
+
+ outputs)
|
850
|
+
|
879
851
|
# For regressor, the type of predict is float64
|
880
852
|
elif self._sklearn_object._estimator_type == 'regressor':
|
881
853
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
882
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
883
855
|
([] if self._drop_input_cols else inputs)
|
884
856
|
+ outputs)
|
857
|
+
|
885
858
|
for prob_func in PROB_FUNCTIONS:
|
886
859
|
if hasattr(self, prob_func):
|
887
860
|
output_cols_prefix: str = f"{prob_func}_"
|