snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class PolynomialCountSketch(BaseTransformer):
57
58
  r"""Polynomial kernel approximation via Tensor Sketch
58
59
  For more details on this class, see [sklearn.kernel_approximation.PolynomialCountSketch]
@@ -60,6 +61,49 @@ class PolynomialCountSketch(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  gamma: float, default=1.0
64
108
  Parameter of the polynomial kernel whose feature map
65
109
  will be approximated.
@@ -83,35 +127,6 @@ class PolynomialCountSketch(BaseTransformer):
83
127
  Determines random number generation for indexHash and bitHash
84
128
  initialization. Pass an int for reproducible results across multiple
85
129
  function calls. See :term:`Glossary <random_state>`.
86
-
87
- input_cols: Optional[Union[str, List[str]]]
88
- A string or list of strings representing column names that contain features.
89
- If this parameter is not specified, all columns in the input DataFrame except
90
- the columns specified by label_cols and sample_weight_col parameters are
91
- considered input columns.
92
-
93
- label_cols: Optional[Union[str, List[str]]]
94
- A string or list of strings representing column names that contain labels.
95
- This is a required param for estimators, as there is no way to infer these
96
- columns. If this parameter is not specified, then object is fitted without
97
- labels (like a transformer).
98
-
99
- output_cols: Optional[Union[str, List[str]]]
100
- A string or list of strings representing column names that will store the
101
- output of predict and transform operations. The length of output_cols must
102
- match the expected number of output columns from the specific estimator or
103
- transformer class used.
104
- If this parameter is not specified, output column names are derived by
105
- adding an OUTPUT_ prefix to the label column names. These inferred output
106
- column names work for estimator's predict() method, but output_cols must
107
- be set explicitly for transformers.
108
-
109
- sample_weight_col: Optional[str]
110
- A string representing the column name containing the sample weights.
111
- This argument is only required when working with weighted datasets.
112
-
113
- drop_input_cols: Optional[bool], default=False
114
- If set, the response of predict(), transform() methods will not contain input columns.
115
130
  """
116
131
 
117
132
  def __init__( # type: ignore[no-untyped-def]
@@ -125,6 +140,7 @@ class PolynomialCountSketch(BaseTransformer):
125
140
  input_cols: Optional[Union[str, Iterable[str]]] = None,
126
141
  output_cols: Optional[Union[str, Iterable[str]]] = None,
127
142
  label_cols: Optional[Union[str, Iterable[str]]] = None,
143
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
128
144
  drop_input_cols: Optional[bool] = False,
129
145
  sample_weight_col: Optional[str] = None,
130
146
  ) -> None:
@@ -133,9 +149,10 @@ class PolynomialCountSketch(BaseTransformer):
133
149
  self.set_input_cols(input_cols)
134
150
  self.set_output_cols(output_cols)
135
151
  self.set_label_cols(label_cols)
152
+ self.set_passthrough_cols(passthrough_cols)
136
153
  self.set_drop_input_cols(drop_input_cols)
137
154
  self.set_sample_weight_col(sample_weight_col)
138
- deps = set(SklearnWrapperProvider().dependencies)
155
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
139
156
 
140
157
  self._deps = list(deps)
141
158
 
@@ -148,13 +165,14 @@ class PolynomialCountSketch(BaseTransformer):
148
165
  args=init_args,
149
166
  klass=sklearn.kernel_approximation.PolynomialCountSketch
150
167
  )
151
- self._sklearn_object = sklearn.kernel_approximation.PolynomialCountSketch(
168
+ self._sklearn_object: Any = sklearn.kernel_approximation.PolynomialCountSketch(
152
169
  **cleaned_up_init_args,
153
170
  )
154
171
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
155
172
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
156
173
  self._snowpark_cols: Optional[List[str]] = self.input_cols
157
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
174
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
175
+ self._autogenerated = True
158
176
 
159
177
  def _get_rand_id(self) -> str:
160
178
  """
@@ -165,24 +183,6 @@ class PolynomialCountSketch(BaseTransformer):
165
183
  """
166
184
  return str(uuid4()).replace("-", "_").upper()
167
185
 
168
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
169
- """
170
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
171
-
172
- Args:
173
- dataset: Input dataset.
174
- """
175
- if not self.input_cols:
176
- cols = [
177
- c for c in dataset.columns
178
- if c not in self.get_label_cols() and c != self.sample_weight_col
179
- ]
180
- self.set_input_cols(input_cols=cols)
181
-
182
- if not self.output_cols:
183
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
184
- self.set_output_cols(output_cols=cols)
185
-
186
186
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PolynomialCountSketch":
187
187
  """
188
188
  Input columns setter.
@@ -228,54 +228,48 @@ class PolynomialCountSketch(BaseTransformer):
228
228
  self
229
229
  """
230
230
  self._infer_input_output_cols(dataset)
231
- if isinstance(dataset, pd.DataFrame):
232
- assert self._sklearn_object is not None # keep mypy happy
233
- self._sklearn_object = self._handlers.fit_pandas(
234
- dataset,
235
- self._sklearn_object,
236
- self.input_cols,
237
- self.label_cols,
238
- self.sample_weight_col
239
- )
240
- elif isinstance(dataset, DataFrame):
241
- self._fit_snowpark(dataset)
242
- else:
243
- raise TypeError(
244
- f"Unexpected dataset type: {type(dataset)}."
245
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
246
- )
231
+ if isinstance(dataset, DataFrame):
232
+ session = dataset._session
233
+ assert session is not None # keep mypy happy
234
+ # Validate that key package version in user workspace are supported in snowflake conda channel
235
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
236
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
237
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
238
+
239
+ # Specify input columns so column pruning will be enforced
240
+ selected_cols = self._get_active_columns()
241
+ if len(selected_cols) > 0:
242
+ dataset = dataset.select(selected_cols)
243
+
244
+ self._snowpark_cols = dataset.select(self.input_cols).columns
245
+
246
+ # If we are already in a stored procedure, no need to kick off another one.
247
+ if SNOWML_SPROC_ENV in os.environ:
248
+ statement_params = telemetry.get_function_usage_statement_params(
249
+ project=_PROJECT,
250
+ subproject=_SUBPROJECT,
251
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialCountSketch.__class__.__name__),
252
+ api_calls=[Session.call],
253
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
254
+ )
255
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
256
+ pd_df.columns = dataset.columns
257
+ dataset = pd_df
258
+
259
+ model_trainer = ModelTrainerBuilder.build(
260
+ estimator=self._sklearn_object,
261
+ dataset=dataset,
262
+ input_cols=self.input_cols,
263
+ label_cols=self.label_cols,
264
+ sample_weight_col=self.sample_weight_col,
265
+ autogenerated=self._autogenerated,
266
+ subproject=_SUBPROJECT
267
+ )
268
+ self._sklearn_object = model_trainer.train()
247
269
  self._is_fitted = True
248
270
  self._get_model_signatures(dataset)
249
271
  return self
250
272
 
251
- def _fit_snowpark(self, dataset: DataFrame) -> None:
252
- session = dataset._session
253
- assert session is not None # keep mypy happy
254
- # Validate that key package version in user workspace are supported in snowflake conda channel
255
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
256
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
257
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
258
-
259
- # Specify input columns so column pruning will be enforced
260
- selected_cols = self._get_active_columns()
261
- if len(selected_cols) > 0:
262
- dataset = dataset.select(selected_cols)
263
-
264
- estimator = self._sklearn_object
265
- assert estimator is not None # Keep mypy happy
266
-
267
- self._snowpark_cols = dataset.select(self.input_cols).columns
268
-
269
- self._sklearn_object = self._handlers.fit_snowpark(
270
- dataset,
271
- session,
272
- estimator,
273
- ["snowflake-snowpark-python"] + self._get_dependencies(),
274
- self.input_cols,
275
- self.label_cols,
276
- self.sample_weight_col,
277
- )
278
-
279
273
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
280
274
  if self._drop_input_cols:
281
275
  return []
@@ -463,11 +457,6 @@ class PolynomialCountSketch(BaseTransformer):
463
457
  subproject=_SUBPROJECT,
464
458
  custom_tags=dict([("autogen", True)]),
465
459
  )
466
- @telemetry.add_stmt_params_to_df(
467
- project=_PROJECT,
468
- subproject=_SUBPROJECT,
469
- custom_tags=dict([("autogen", True)]),
470
- )
471
460
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
472
461
  """Method not supported for this class.
473
462
 
@@ -519,11 +508,6 @@ class PolynomialCountSketch(BaseTransformer):
519
508
  subproject=_SUBPROJECT,
520
509
  custom_tags=dict([("autogen", True)]),
521
510
  )
522
- @telemetry.add_stmt_params_to_df(
523
- project=_PROJECT,
524
- subproject=_SUBPROJECT,
525
- custom_tags=dict([("autogen", True)]),
526
- )
527
511
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
528
512
  """Generate the feature map approximation for X
529
513
  For more details on this function, see [sklearn.kernel_approximation.PolynomialCountSketch.transform]
@@ -582,7 +566,8 @@ class PolynomialCountSketch(BaseTransformer):
582
566
  if False:
583
567
  self.fit(dataset)
584
568
  assert self._sklearn_object is not None
585
- return self._sklearn_object.labels_
569
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
570
+ return labels
586
571
  else:
587
572
  raise NotImplementedError
588
573
 
@@ -618,6 +603,7 @@ class PolynomialCountSketch(BaseTransformer):
618
603
  output_cols = []
619
604
 
620
605
  # Make sure column names are valid snowflake identifiers.
606
+ assert output_cols is not None # Make MyPy happy
621
607
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
622
608
 
623
609
  return rv
@@ -628,11 +614,6 @@ class PolynomialCountSketch(BaseTransformer):
628
614
  subproject=_SUBPROJECT,
629
615
  custom_tags=dict([("autogen", True)]),
630
616
  )
631
- @telemetry.add_stmt_params_to_df(
632
- project=_PROJECT,
633
- subproject=_SUBPROJECT,
634
- custom_tags=dict([("autogen", True)]),
635
- )
636
617
  def predict_proba(
637
618
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
638
619
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -673,11 +654,6 @@ class PolynomialCountSketch(BaseTransformer):
673
654
  subproject=_SUBPROJECT,
674
655
  custom_tags=dict([("autogen", True)]),
675
656
  )
676
- @telemetry.add_stmt_params_to_df(
677
- project=_PROJECT,
678
- subproject=_SUBPROJECT,
679
- custom_tags=dict([("autogen", True)]),
680
- )
681
657
  def predict_log_proba(
682
658
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
683
659
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -714,16 +690,6 @@ class PolynomialCountSketch(BaseTransformer):
714
690
  return output_df
715
691
 
716
692
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
717
- @telemetry.send_api_usage_telemetry(
718
- project=_PROJECT,
719
- subproject=_SUBPROJECT,
720
- custom_tags=dict([("autogen", True)]),
721
- )
722
- @telemetry.add_stmt_params_to_df(
723
- project=_PROJECT,
724
- subproject=_SUBPROJECT,
725
- custom_tags=dict([("autogen", True)]),
726
- )
727
693
  def decision_function(
728
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
729
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,11 +788,6 @@ class PolynomialCountSketch(BaseTransformer):
822
788
  subproject=_SUBPROJECT,
823
789
  custom_tags=dict([("autogen", True)]),
824
790
  )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
791
  def kneighbors(
831
792
  self,
832
793
  dataset: Union[DataFrame, pd.DataFrame],
@@ -886,18 +847,28 @@ class PolynomialCountSketch(BaseTransformer):
886
847
  # For classifier, the type of predict is the same as the type of label
887
848
  if self._sklearn_object._estimator_type == 'classifier':
888
849
  # label columns is the desired type for output
889
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
850
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
890
851
  # rename the output columns
891
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
852
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
853
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
854
+ ([] if self._drop_input_cols else inputs)
855
+ + outputs)
856
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
857
+ # For outlier models, returns -1 for outliers and 1 for inliers.
858
+ # Clusterer returns int64 cluster labels.
859
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
860
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
892
861
  self._model_signature_dict["predict"] = ModelSignature(inputs,
893
862
  ([] if self._drop_input_cols else inputs)
894
863
  + outputs)
864
+
895
865
  # For regressor, the type of predict is float64
896
866
  elif self._sklearn_object._estimator_type == 'regressor':
897
867
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
898
868
  self._model_signature_dict["predict"] = ModelSignature(inputs,
899
869
  ([] if self._drop_input_cols else inputs)
900
870
  + outputs)
871
+
901
872
  for prob_func in PROB_FUNCTIONS:
902
873
  if hasattr(self, prob_func):
903
874
  output_cols_prefix: str = f"{prob_func}_"