snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RidgeClassifierCV(BaseTransformer):
|
57
58
|
r"""Ridge classifier with built-in cross-validation
|
58
59
|
For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
|
@@ -60,6 +61,51 @@ class RidgeClassifierCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
|
64
110
|
Array of alpha values to try.
|
65
111
|
Regularization strength; must be a positive float. Regularization
|
@@ -104,35 +150,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
104
150
|
each alpha should be stored in the ``cv_values_`` attribute (see
|
105
151
|
below). This flag is only compatible with ``cv=None`` (i.e. using
|
106
152
|
Leave-One-Out Cross-Validation).
|
107
|
-
|
108
|
-
input_cols: Optional[Union[str, List[str]]]
|
109
|
-
A string or list of strings representing column names that contain features.
|
110
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
111
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
112
|
-
considered input columns.
|
113
|
-
|
114
|
-
label_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain labels.
|
116
|
-
This is a required param for estimators, as there is no way to infer these
|
117
|
-
columns. If this parameter is not specified, then object is fitted without
|
118
|
-
labels (like a transformer).
|
119
|
-
|
120
|
-
output_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that will store the
|
122
|
-
output of predict and transform operations. The length of output_cols must
|
123
|
-
match the expected number of output columns from the specific estimator or
|
124
|
-
transformer class used.
|
125
|
-
If this parameter is not specified, output column names are derived by
|
126
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
127
|
-
column names work for estimator's predict() method, but output_cols must
|
128
|
-
be set explicitly for transformers.
|
129
|
-
|
130
|
-
sample_weight_col: Optional[str]
|
131
|
-
A string representing the column name containing the sample weights.
|
132
|
-
This argument is only required when working with weighted datasets.
|
133
|
-
|
134
|
-
drop_input_cols: Optional[bool], default=False
|
135
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
136
153
|
"""
|
137
154
|
|
138
155
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -147,6 +164,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
147
164
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
148
165
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
149
166
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
167
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
150
168
|
drop_input_cols: Optional[bool] = False,
|
151
169
|
sample_weight_col: Optional[str] = None,
|
152
170
|
) -> None:
|
@@ -155,9 +173,10 @@ class RidgeClassifierCV(BaseTransformer):
|
|
155
173
|
self.set_input_cols(input_cols)
|
156
174
|
self.set_output_cols(output_cols)
|
157
175
|
self.set_label_cols(label_cols)
|
176
|
+
self.set_passthrough_cols(passthrough_cols)
|
158
177
|
self.set_drop_input_cols(drop_input_cols)
|
159
178
|
self.set_sample_weight_col(sample_weight_col)
|
160
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
161
180
|
|
162
181
|
self._deps = list(deps)
|
163
182
|
|
@@ -171,13 +190,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
171
190
|
args=init_args,
|
172
191
|
klass=sklearn.linear_model.RidgeClassifierCV
|
173
192
|
)
|
174
|
-
self._sklearn_object = sklearn.linear_model.RidgeClassifierCV(
|
193
|
+
self._sklearn_object: Any = sklearn.linear_model.RidgeClassifierCV(
|
175
194
|
**cleaned_up_init_args,
|
176
195
|
)
|
177
196
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
178
197
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
179
198
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
180
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
199
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
200
|
+
self._autogenerated = True
|
181
201
|
|
182
202
|
def _get_rand_id(self) -> str:
|
183
203
|
"""
|
@@ -188,24 +208,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
188
208
|
"""
|
189
209
|
return str(uuid4()).replace("-", "_").upper()
|
190
210
|
|
191
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
192
|
-
"""
|
193
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
194
|
-
|
195
|
-
Args:
|
196
|
-
dataset: Input dataset.
|
197
|
-
"""
|
198
|
-
if not self.input_cols:
|
199
|
-
cols = [
|
200
|
-
c for c in dataset.columns
|
201
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
202
|
-
]
|
203
|
-
self.set_input_cols(input_cols=cols)
|
204
|
-
|
205
|
-
if not self.output_cols:
|
206
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
207
|
-
self.set_output_cols(output_cols=cols)
|
208
|
-
|
209
211
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RidgeClassifierCV":
|
210
212
|
"""
|
211
213
|
Input columns setter.
|
@@ -251,54 +253,48 @@ class RidgeClassifierCV(BaseTransformer):
|
|
251
253
|
self
|
252
254
|
"""
|
253
255
|
self._infer_input_output_cols(dataset)
|
254
|
-
if isinstance(dataset,
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
self.
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
256
|
+
if isinstance(dataset, DataFrame):
|
257
|
+
session = dataset._session
|
258
|
+
assert session is not None # keep mypy happy
|
259
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
260
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
261
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
262
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
263
|
+
|
264
|
+
# Specify input columns so column pruning will be enforced
|
265
|
+
selected_cols = self._get_active_columns()
|
266
|
+
if len(selected_cols) > 0:
|
267
|
+
dataset = dataset.select(selected_cols)
|
268
|
+
|
269
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
270
|
+
|
271
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
272
|
+
if SNOWML_SPROC_ENV in os.environ:
|
273
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
274
|
+
project=_PROJECT,
|
275
|
+
subproject=_SUBPROJECT,
|
276
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
|
277
|
+
api_calls=[Session.call],
|
278
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
279
|
+
)
|
280
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
281
|
+
pd_df.columns = dataset.columns
|
282
|
+
dataset = pd_df
|
283
|
+
|
284
|
+
model_trainer = ModelTrainerBuilder.build(
|
285
|
+
estimator=self._sklearn_object,
|
286
|
+
dataset=dataset,
|
287
|
+
input_cols=self.input_cols,
|
288
|
+
label_cols=self.label_cols,
|
289
|
+
sample_weight_col=self.sample_weight_col,
|
290
|
+
autogenerated=self._autogenerated,
|
291
|
+
subproject=_SUBPROJECT
|
292
|
+
)
|
293
|
+
self._sklearn_object = model_trainer.train()
|
270
294
|
self._is_fitted = True
|
271
295
|
self._get_model_signatures(dataset)
|
272
296
|
return self
|
273
297
|
|
274
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
275
|
-
session = dataset._session
|
276
|
-
assert session is not None # keep mypy happy
|
277
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
278
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
279
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
280
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
281
|
-
|
282
|
-
# Specify input columns so column pruning will be enforced
|
283
|
-
selected_cols = self._get_active_columns()
|
284
|
-
if len(selected_cols) > 0:
|
285
|
-
dataset = dataset.select(selected_cols)
|
286
|
-
|
287
|
-
estimator = self._sklearn_object
|
288
|
-
assert estimator is not None # Keep mypy happy
|
289
|
-
|
290
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
|
-
|
292
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
293
|
-
dataset,
|
294
|
-
session,
|
295
|
-
estimator,
|
296
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
297
|
-
self.input_cols,
|
298
|
-
self.label_cols,
|
299
|
-
self.sample_weight_col,
|
300
|
-
)
|
301
|
-
|
302
298
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
303
299
|
if self._drop_input_cols:
|
304
300
|
return []
|
@@ -486,11 +482,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
486
482
|
subproject=_SUBPROJECT,
|
487
483
|
custom_tags=dict([("autogen", True)]),
|
488
484
|
)
|
489
|
-
@telemetry.add_stmt_params_to_df(
|
490
|
-
project=_PROJECT,
|
491
|
-
subproject=_SUBPROJECT,
|
492
|
-
custom_tags=dict([("autogen", True)]),
|
493
|
-
)
|
494
485
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
495
486
|
"""Predict class labels for samples in `X`
|
496
487
|
For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.predict]
|
@@ -544,11 +535,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
544
535
|
subproject=_SUBPROJECT,
|
545
536
|
custom_tags=dict([("autogen", True)]),
|
546
537
|
)
|
547
|
-
@telemetry.add_stmt_params_to_df(
|
548
|
-
project=_PROJECT,
|
549
|
-
subproject=_SUBPROJECT,
|
550
|
-
custom_tags=dict([("autogen", True)]),
|
551
|
-
)
|
552
538
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
553
539
|
"""Method not supported for this class.
|
554
540
|
|
@@ -605,7 +591,8 @@ class RidgeClassifierCV(BaseTransformer):
|
|
605
591
|
if False:
|
606
592
|
self.fit(dataset)
|
607
593
|
assert self._sklearn_object is not None
|
608
|
-
|
594
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
595
|
+
return labels
|
609
596
|
else:
|
610
597
|
raise NotImplementedError
|
611
598
|
|
@@ -641,6 +628,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
641
628
|
output_cols = []
|
642
629
|
|
643
630
|
# Make sure column names are valid snowflake identifiers.
|
631
|
+
assert output_cols is not None # Make MyPy happy
|
644
632
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
645
633
|
|
646
634
|
return rv
|
@@ -651,11 +639,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
651
639
|
subproject=_SUBPROJECT,
|
652
640
|
custom_tags=dict([("autogen", True)]),
|
653
641
|
)
|
654
|
-
@telemetry.add_stmt_params_to_df(
|
655
|
-
project=_PROJECT,
|
656
|
-
subproject=_SUBPROJECT,
|
657
|
-
custom_tags=dict([("autogen", True)]),
|
658
|
-
)
|
659
642
|
def predict_proba(
|
660
643
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
661
644
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -696,11 +679,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
696
679
|
subproject=_SUBPROJECT,
|
697
680
|
custom_tags=dict([("autogen", True)]),
|
698
681
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
682
|
def predict_log_proba(
|
705
683
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
706
684
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -737,16 +715,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
737
715
|
return output_df
|
738
716
|
|
739
717
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
740
|
-
@telemetry.send_api_usage_telemetry(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
|
-
@telemetry.add_stmt_params_to_df(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
718
|
def decision_function(
|
751
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
752
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -849,11 +817,6 @@ class RidgeClassifierCV(BaseTransformer):
|
|
849
817
|
subproject=_SUBPROJECT,
|
850
818
|
custom_tags=dict([("autogen", True)]),
|
851
819
|
)
|
852
|
-
@telemetry.add_stmt_params_to_df(
|
853
|
-
project=_PROJECT,
|
854
|
-
subproject=_SUBPROJECT,
|
855
|
-
custom_tags=dict([("autogen", True)]),
|
856
|
-
)
|
857
820
|
def kneighbors(
|
858
821
|
self,
|
859
822
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -913,18 +876,28 @@ class RidgeClassifierCV(BaseTransformer):
|
|
913
876
|
# For classifier, the type of predict is the same as the type of label
|
914
877
|
if self._sklearn_object._estimator_type == 'classifier':
|
915
878
|
# label columns is the desired type for output
|
916
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
879
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
917
880
|
# rename the output columns
|
918
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
881
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
919
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
883
|
([] if self._drop_input_cols else inputs)
|
921
884
|
+ outputs)
|
885
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
886
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
887
|
+
# Clusterer returns int64 cluster labels.
|
888
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
889
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
890
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
891
|
+
([] if self._drop_input_cols else inputs)
|
892
|
+
+ outputs)
|
893
|
+
|
922
894
|
# For regressor, the type of predict is float64
|
923
895
|
elif self._sklearn_object._estimator_type == 'regressor':
|
924
896
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
925
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
926
898
|
([] if self._drop_input_cols else inputs)
|
927
899
|
+ outputs)
|
900
|
+
|
928
901
|
for prob_func in PROB_FUNCTIONS:
|
929
902
|
if hasattr(self, prob_func):
|
930
903
|
output_cols_prefix: str = f"{prob_func}_"
|