snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RidgeClassifierCV(BaseTransformer):
57
58
  r"""Ridge classifier with built-in cross-validation
58
59
  For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
@@ -60,6 +61,51 @@ class RidgeClassifierCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
64
110
  Array of alpha values to try.
65
111
  Regularization strength; must be a positive float. Regularization
@@ -104,35 +150,6 @@ class RidgeClassifierCV(BaseTransformer):
104
150
  each alpha should be stored in the ``cv_values_`` attribute (see
105
151
  below). This flag is only compatible with ``cv=None`` (i.e. using
106
152
  Leave-One-Out Cross-Validation).
107
-
108
- input_cols: Optional[Union[str, List[str]]]
109
- A string or list of strings representing column names that contain features.
110
- If this parameter is not specified, all columns in the input DataFrame except
111
- the columns specified by label_cols and sample_weight_col parameters are
112
- considered input columns.
113
-
114
- label_cols: Optional[Union[str, List[str]]]
115
- A string or list of strings representing column names that contain labels.
116
- This is a required param for estimators, as there is no way to infer these
117
- columns. If this parameter is not specified, then object is fitted without
118
- labels (like a transformer).
119
-
120
- output_cols: Optional[Union[str, List[str]]]
121
- A string or list of strings representing column names that will store the
122
- output of predict and transform operations. The length of output_cols must
123
- match the expected number of output columns from the specific estimator or
124
- transformer class used.
125
- If this parameter is not specified, output column names are derived by
126
- adding an OUTPUT_ prefix to the label column names. These inferred output
127
- column names work for estimator's predict() method, but output_cols must
128
- be set explicitly for transformers.
129
-
130
- sample_weight_col: Optional[str]
131
- A string representing the column name containing the sample weights.
132
- This argument is only required when working with weighted datasets.
133
-
134
- drop_input_cols: Optional[bool], default=False
135
- If set, the response of predict(), transform() methods will not contain input columns.
136
153
  """
137
154
 
138
155
  def __init__( # type: ignore[no-untyped-def]
@@ -147,6 +164,7 @@ class RidgeClassifierCV(BaseTransformer):
147
164
  input_cols: Optional[Union[str, Iterable[str]]] = None,
148
165
  output_cols: Optional[Union[str, Iterable[str]]] = None,
149
166
  label_cols: Optional[Union[str, Iterable[str]]] = None,
167
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
150
168
  drop_input_cols: Optional[bool] = False,
151
169
  sample_weight_col: Optional[str] = None,
152
170
  ) -> None:
@@ -155,9 +173,10 @@ class RidgeClassifierCV(BaseTransformer):
155
173
  self.set_input_cols(input_cols)
156
174
  self.set_output_cols(output_cols)
157
175
  self.set_label_cols(label_cols)
176
+ self.set_passthrough_cols(passthrough_cols)
158
177
  self.set_drop_input_cols(drop_input_cols)
159
178
  self.set_sample_weight_col(sample_weight_col)
160
- deps = set(SklearnWrapperProvider().dependencies)
179
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
161
180
 
162
181
  self._deps = list(deps)
163
182
 
@@ -171,13 +190,14 @@ class RidgeClassifierCV(BaseTransformer):
171
190
  args=init_args,
172
191
  klass=sklearn.linear_model.RidgeClassifierCV
173
192
  )
174
- self._sklearn_object = sklearn.linear_model.RidgeClassifierCV(
193
+ self._sklearn_object: Any = sklearn.linear_model.RidgeClassifierCV(
175
194
  **cleaned_up_init_args,
176
195
  )
177
196
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
178
197
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
179
198
  self._snowpark_cols: Optional[List[str]] = self.input_cols
180
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
199
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
200
+ self._autogenerated = True
181
201
 
182
202
  def _get_rand_id(self) -> str:
183
203
  """
@@ -188,24 +208,6 @@ class RidgeClassifierCV(BaseTransformer):
188
208
  """
189
209
  return str(uuid4()).replace("-", "_").upper()
190
210
 
191
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
192
- """
193
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
194
-
195
- Args:
196
- dataset: Input dataset.
197
- """
198
- if not self.input_cols:
199
- cols = [
200
- c for c in dataset.columns
201
- if c not in self.get_label_cols() and c != self.sample_weight_col
202
- ]
203
- self.set_input_cols(input_cols=cols)
204
-
205
- if not self.output_cols:
206
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
207
- self.set_output_cols(output_cols=cols)
208
-
209
211
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RidgeClassifierCV":
210
212
  """
211
213
  Input columns setter.
@@ -251,54 +253,48 @@ class RidgeClassifierCV(BaseTransformer):
251
253
  self
252
254
  """
253
255
  self._infer_input_output_cols(dataset)
254
- if isinstance(dataset, pd.DataFrame):
255
- assert self._sklearn_object is not None # keep mypy happy
256
- self._sklearn_object = self._handlers.fit_pandas(
257
- dataset,
258
- self._sklearn_object,
259
- self.input_cols,
260
- self.label_cols,
261
- self.sample_weight_col
262
- )
263
- elif isinstance(dataset, DataFrame):
264
- self._fit_snowpark(dataset)
265
- else:
266
- raise TypeError(
267
- f"Unexpected dataset type: {type(dataset)}."
268
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
269
- )
256
+ if isinstance(dataset, DataFrame):
257
+ session = dataset._session
258
+ assert session is not None # keep mypy happy
259
+ # Validate that key package version in user workspace are supported in snowflake conda channel
260
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
261
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
262
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
263
+
264
+ # Specify input columns so column pruning will be enforced
265
+ selected_cols = self._get_active_columns()
266
+ if len(selected_cols) > 0:
267
+ dataset = dataset.select(selected_cols)
268
+
269
+ self._snowpark_cols = dataset.select(self.input_cols).columns
270
+
271
+ # If we are already in a stored procedure, no need to kick off another one.
272
+ if SNOWML_SPROC_ENV in os.environ:
273
+ statement_params = telemetry.get_function_usage_statement_params(
274
+ project=_PROJECT,
275
+ subproject=_SUBPROJECT,
276
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
277
+ api_calls=[Session.call],
278
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
279
+ )
280
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
281
+ pd_df.columns = dataset.columns
282
+ dataset = pd_df
283
+
284
+ model_trainer = ModelTrainerBuilder.build(
285
+ estimator=self._sklearn_object,
286
+ dataset=dataset,
287
+ input_cols=self.input_cols,
288
+ label_cols=self.label_cols,
289
+ sample_weight_col=self.sample_weight_col,
290
+ autogenerated=self._autogenerated,
291
+ subproject=_SUBPROJECT
292
+ )
293
+ self._sklearn_object = model_trainer.train()
270
294
  self._is_fitted = True
271
295
  self._get_model_signatures(dataset)
272
296
  return self
273
297
 
274
- def _fit_snowpark(self, dataset: DataFrame) -> None:
275
- session = dataset._session
276
- assert session is not None # keep mypy happy
277
- # Validate that key package version in user workspace are supported in snowflake conda channel
278
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
279
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
280
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
281
-
282
- # Specify input columns so column pruning will be enforced
283
- selected_cols = self._get_active_columns()
284
- if len(selected_cols) > 0:
285
- dataset = dataset.select(selected_cols)
286
-
287
- estimator = self._sklearn_object
288
- assert estimator is not None # Keep mypy happy
289
-
290
- self._snowpark_cols = dataset.select(self.input_cols).columns
291
-
292
- self._sklearn_object = self._handlers.fit_snowpark(
293
- dataset,
294
- session,
295
- estimator,
296
- ["snowflake-snowpark-python"] + self._get_dependencies(),
297
- self.input_cols,
298
- self.label_cols,
299
- self.sample_weight_col,
300
- )
301
-
302
298
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
303
299
  if self._drop_input_cols:
304
300
  return []
@@ -486,11 +482,6 @@ class RidgeClassifierCV(BaseTransformer):
486
482
  subproject=_SUBPROJECT,
487
483
  custom_tags=dict([("autogen", True)]),
488
484
  )
489
- @telemetry.add_stmt_params_to_df(
490
- project=_PROJECT,
491
- subproject=_SUBPROJECT,
492
- custom_tags=dict([("autogen", True)]),
493
- )
494
485
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
495
486
  """Predict class labels for samples in `X`
496
487
  For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.predict]
@@ -544,11 +535,6 @@ class RidgeClassifierCV(BaseTransformer):
544
535
  subproject=_SUBPROJECT,
545
536
  custom_tags=dict([("autogen", True)]),
546
537
  )
547
- @telemetry.add_stmt_params_to_df(
548
- project=_PROJECT,
549
- subproject=_SUBPROJECT,
550
- custom_tags=dict([("autogen", True)]),
551
- )
552
538
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
553
539
  """Method not supported for this class.
554
540
 
@@ -605,7 +591,8 @@ class RidgeClassifierCV(BaseTransformer):
605
591
  if False:
606
592
  self.fit(dataset)
607
593
  assert self._sklearn_object is not None
608
- return self._sklearn_object.labels_
594
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
595
+ return labels
609
596
  else:
610
597
  raise NotImplementedError
611
598
 
@@ -641,6 +628,7 @@ class RidgeClassifierCV(BaseTransformer):
641
628
  output_cols = []
642
629
 
643
630
  # Make sure column names are valid snowflake identifiers.
631
+ assert output_cols is not None # Make MyPy happy
644
632
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
633
 
646
634
  return rv
@@ -651,11 +639,6 @@ class RidgeClassifierCV(BaseTransformer):
651
639
  subproject=_SUBPROJECT,
652
640
  custom_tags=dict([("autogen", True)]),
653
641
  )
654
- @telemetry.add_stmt_params_to_df(
655
- project=_PROJECT,
656
- subproject=_SUBPROJECT,
657
- custom_tags=dict([("autogen", True)]),
658
- )
659
642
  def predict_proba(
660
643
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
661
644
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -696,11 +679,6 @@ class RidgeClassifierCV(BaseTransformer):
696
679
  subproject=_SUBPROJECT,
697
680
  custom_tags=dict([("autogen", True)]),
698
681
  )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
682
  def predict_log_proba(
705
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
706
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -737,16 +715,6 @@ class RidgeClassifierCV(BaseTransformer):
737
715
  return output_df
738
716
 
739
717
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
740
- @telemetry.send_api_usage_telemetry(
741
- project=_PROJECT,
742
- subproject=_SUBPROJECT,
743
- custom_tags=dict([("autogen", True)]),
744
- )
745
- @telemetry.add_stmt_params_to_df(
746
- project=_PROJECT,
747
- subproject=_SUBPROJECT,
748
- custom_tags=dict([("autogen", True)]),
749
- )
750
718
  def decision_function(
751
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
752
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -849,11 +817,6 @@ class RidgeClassifierCV(BaseTransformer):
849
817
  subproject=_SUBPROJECT,
850
818
  custom_tags=dict([("autogen", True)]),
851
819
  )
852
- @telemetry.add_stmt_params_to_df(
853
- project=_PROJECT,
854
- subproject=_SUBPROJECT,
855
- custom_tags=dict([("autogen", True)]),
856
- )
857
820
  def kneighbors(
858
821
  self,
859
822
  dataset: Union[DataFrame, pd.DataFrame],
@@ -913,18 +876,28 @@ class RidgeClassifierCV(BaseTransformer):
913
876
  # For classifier, the type of predict is the same as the type of label
914
877
  if self._sklearn_object._estimator_type == 'classifier':
915
878
  # label columns is the desired type for output
916
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
879
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
917
880
  # rename the output columns
918
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
881
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
919
882
  self._model_signature_dict["predict"] = ModelSignature(inputs,
920
883
  ([] if self._drop_input_cols else inputs)
921
884
  + outputs)
885
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
886
+ # For outlier models, returns -1 for outliers and 1 for inliers.
887
+ # Clusterer returns int64 cluster labels.
888
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
889
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
890
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
891
+ ([] if self._drop_input_cols else inputs)
892
+ + outputs)
893
+
922
894
  # For regressor, the type of predict is float64
923
895
  elif self._sklearn_object._estimator_type == 'regressor':
924
896
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
925
897
  self._model_signature_dict["predict"] = ModelSignature(inputs,
926
898
  ([] if self._drop_input_cols else inputs)
927
899
  + outputs)
900
+
928
901
  for prob_func in PROB_FUNCTIONS:
929
902
  if hasattr(self, prob_func):
930
903
  output_cols_prefix: str = f"{prob_func}_"