snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelDensity(BaseTransformer):
|
57
58
|
r"""Kernel Density Estimation
|
58
59
|
For more details on this class, see [sklearn.neighbors.KernelDensity]
|
@@ -60,6 +61,49 @@ class KernelDensity(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
bandwidth: float or {"scott", "silverman"}, default=1.0
|
64
108
|
The bandwidth of the kernel. If bandwidth is a float, it defines the
|
65
109
|
bandwidth of the kernel. If bandwidth is a string, one of the estimation
|
@@ -104,35 +148,6 @@ class KernelDensity(BaseTransformer):
|
|
104
148
|
Additional parameters to be passed to the tree for use with the
|
105
149
|
metric. For more information, see the documentation of
|
106
150
|
:class:`BallTree` or :class:`KDTree`.
|
107
|
-
|
108
|
-
input_cols: Optional[Union[str, List[str]]]
|
109
|
-
A string or list of strings representing column names that contain features.
|
110
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
111
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
112
|
-
considered input columns.
|
113
|
-
|
114
|
-
label_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain labels.
|
116
|
-
This is a required param for estimators, as there is no way to infer these
|
117
|
-
columns. If this parameter is not specified, then object is fitted without
|
118
|
-
labels (like a transformer).
|
119
|
-
|
120
|
-
output_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that will store the
|
122
|
-
output of predict and transform operations. The length of output_cols must
|
123
|
-
match the expected number of output columns from the specific estimator or
|
124
|
-
transformer class used.
|
125
|
-
If this parameter is not specified, output column names are derived by
|
126
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
127
|
-
column names work for estimator's predict() method, but output_cols must
|
128
|
-
be set explicitly for transformers.
|
129
|
-
|
130
|
-
sample_weight_col: Optional[str]
|
131
|
-
A string representing the column name containing the sample weights.
|
132
|
-
This argument is only required when working with weighted datasets.
|
133
|
-
|
134
|
-
drop_input_cols: Optional[bool], default=False
|
135
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
136
151
|
"""
|
137
152
|
|
138
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -150,6 +165,7 @@ class KernelDensity(BaseTransformer):
|
|
150
165
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
151
166
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
152
167
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
168
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
153
169
|
drop_input_cols: Optional[bool] = False,
|
154
170
|
sample_weight_col: Optional[str] = None,
|
155
171
|
) -> None:
|
@@ -158,9 +174,10 @@ class KernelDensity(BaseTransformer):
|
|
158
174
|
self.set_input_cols(input_cols)
|
159
175
|
self.set_output_cols(output_cols)
|
160
176
|
self.set_label_cols(label_cols)
|
177
|
+
self.set_passthrough_cols(passthrough_cols)
|
161
178
|
self.set_drop_input_cols(drop_input_cols)
|
162
179
|
self.set_sample_weight_col(sample_weight_col)
|
163
|
-
deps = set(
|
180
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
164
181
|
|
165
182
|
self._deps = list(deps)
|
166
183
|
|
@@ -177,13 +194,14 @@ class KernelDensity(BaseTransformer):
|
|
177
194
|
args=init_args,
|
178
195
|
klass=sklearn.neighbors.KernelDensity
|
179
196
|
)
|
180
|
-
self._sklearn_object = sklearn.neighbors.KernelDensity(
|
197
|
+
self._sklearn_object: Any = sklearn.neighbors.KernelDensity(
|
181
198
|
**cleaned_up_init_args,
|
182
199
|
)
|
183
200
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
184
201
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
185
202
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
186
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
203
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
204
|
+
self._autogenerated = True
|
187
205
|
|
188
206
|
def _get_rand_id(self) -> str:
|
189
207
|
"""
|
@@ -194,24 +212,6 @@ class KernelDensity(BaseTransformer):
|
|
194
212
|
"""
|
195
213
|
return str(uuid4()).replace("-", "_").upper()
|
196
214
|
|
197
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
198
|
-
"""
|
199
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
200
|
-
|
201
|
-
Args:
|
202
|
-
dataset: Input dataset.
|
203
|
-
"""
|
204
|
-
if not self.input_cols:
|
205
|
-
cols = [
|
206
|
-
c for c in dataset.columns
|
207
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
208
|
-
]
|
209
|
-
self.set_input_cols(input_cols=cols)
|
210
|
-
|
211
|
-
if not self.output_cols:
|
212
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
213
|
-
self.set_output_cols(output_cols=cols)
|
214
|
-
|
215
215
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KernelDensity":
|
216
216
|
"""
|
217
217
|
Input columns setter.
|
@@ -257,54 +257,48 @@ class KernelDensity(BaseTransformer):
|
|
257
257
|
self
|
258
258
|
"""
|
259
259
|
self._infer_input_output_cols(dataset)
|
260
|
-
if isinstance(dataset,
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
self.
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
260
|
+
if isinstance(dataset, DataFrame):
|
261
|
+
session = dataset._session
|
262
|
+
assert session is not None # keep mypy happy
|
263
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
264
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
265
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
266
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
267
|
+
|
268
|
+
# Specify input columns so column pruning will be enforced
|
269
|
+
selected_cols = self._get_active_columns()
|
270
|
+
if len(selected_cols) > 0:
|
271
|
+
dataset = dataset.select(selected_cols)
|
272
|
+
|
273
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
|
+
|
275
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
276
|
+
if SNOWML_SPROC_ENV in os.environ:
|
277
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
278
|
+
project=_PROJECT,
|
279
|
+
subproject=_SUBPROJECT,
|
280
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelDensity.__class__.__name__),
|
281
|
+
api_calls=[Session.call],
|
282
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
283
|
+
)
|
284
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
|
+
pd_df.columns = dataset.columns
|
286
|
+
dataset = pd_df
|
287
|
+
|
288
|
+
model_trainer = ModelTrainerBuilder.build(
|
289
|
+
estimator=self._sklearn_object,
|
290
|
+
dataset=dataset,
|
291
|
+
input_cols=self.input_cols,
|
292
|
+
label_cols=self.label_cols,
|
293
|
+
sample_weight_col=self.sample_weight_col,
|
294
|
+
autogenerated=self._autogenerated,
|
295
|
+
subproject=_SUBPROJECT
|
296
|
+
)
|
297
|
+
self._sklearn_object = model_trainer.train()
|
276
298
|
self._is_fitted = True
|
277
299
|
self._get_model_signatures(dataset)
|
278
300
|
return self
|
279
301
|
|
280
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
281
|
-
session = dataset._session
|
282
|
-
assert session is not None # keep mypy happy
|
283
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
284
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
285
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
286
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
287
|
-
|
288
|
-
# Specify input columns so column pruning will be enforced
|
289
|
-
selected_cols = self._get_active_columns()
|
290
|
-
if len(selected_cols) > 0:
|
291
|
-
dataset = dataset.select(selected_cols)
|
292
|
-
|
293
|
-
estimator = self._sklearn_object
|
294
|
-
assert estimator is not None # Keep mypy happy
|
295
|
-
|
296
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
|
-
|
298
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
299
|
-
dataset,
|
300
|
-
session,
|
301
|
-
estimator,
|
302
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
303
|
-
self.input_cols,
|
304
|
-
self.label_cols,
|
305
|
-
self.sample_weight_col,
|
306
|
-
)
|
307
|
-
|
308
302
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
309
303
|
if self._drop_input_cols:
|
310
304
|
return []
|
@@ -492,11 +486,6 @@ class KernelDensity(BaseTransformer):
|
|
492
486
|
subproject=_SUBPROJECT,
|
493
487
|
custom_tags=dict([("autogen", True)]),
|
494
488
|
)
|
495
|
-
@telemetry.add_stmt_params_to_df(
|
496
|
-
project=_PROJECT,
|
497
|
-
subproject=_SUBPROJECT,
|
498
|
-
custom_tags=dict([("autogen", True)]),
|
499
|
-
)
|
500
489
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
501
490
|
"""Method not supported for this class.
|
502
491
|
|
@@ -548,11 +537,6 @@ class KernelDensity(BaseTransformer):
|
|
548
537
|
subproject=_SUBPROJECT,
|
549
538
|
custom_tags=dict([("autogen", True)]),
|
550
539
|
)
|
551
|
-
@telemetry.add_stmt_params_to_df(
|
552
|
-
project=_PROJECT,
|
553
|
-
subproject=_SUBPROJECT,
|
554
|
-
custom_tags=dict([("autogen", True)]),
|
555
|
-
)
|
556
540
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
557
541
|
"""Method not supported for this class.
|
558
542
|
|
@@ -609,7 +593,8 @@ class KernelDensity(BaseTransformer):
|
|
609
593
|
if False:
|
610
594
|
self.fit(dataset)
|
611
595
|
assert self._sklearn_object is not None
|
612
|
-
|
596
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
597
|
+
return labels
|
613
598
|
else:
|
614
599
|
raise NotImplementedError
|
615
600
|
|
@@ -645,6 +630,7 @@ class KernelDensity(BaseTransformer):
|
|
645
630
|
output_cols = []
|
646
631
|
|
647
632
|
# Make sure column names are valid snowflake identifiers.
|
633
|
+
assert output_cols is not None # Make MyPy happy
|
648
634
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
635
|
|
650
636
|
return rv
|
@@ -655,11 +641,6 @@ class KernelDensity(BaseTransformer):
|
|
655
641
|
subproject=_SUBPROJECT,
|
656
642
|
custom_tags=dict([("autogen", True)]),
|
657
643
|
)
|
658
|
-
@telemetry.add_stmt_params_to_df(
|
659
|
-
project=_PROJECT,
|
660
|
-
subproject=_SUBPROJECT,
|
661
|
-
custom_tags=dict([("autogen", True)]),
|
662
|
-
)
|
663
644
|
def predict_proba(
|
664
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
665
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +681,6 @@ class KernelDensity(BaseTransformer):
|
|
700
681
|
subproject=_SUBPROJECT,
|
701
682
|
custom_tags=dict([("autogen", True)]),
|
702
683
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
684
|
def predict_log_proba(
|
709
685
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
686
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,16 +717,6 @@ class KernelDensity(BaseTransformer):
|
|
741
717
|
return output_df
|
742
718
|
|
743
719
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
744
|
-
@telemetry.send_api_usage_telemetry(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
|
-
@telemetry.add_stmt_params_to_df(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
720
|
def decision_function(
|
755
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
756
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -851,11 +817,6 @@ class KernelDensity(BaseTransformer):
|
|
851
817
|
subproject=_SUBPROJECT,
|
852
818
|
custom_tags=dict([("autogen", True)]),
|
853
819
|
)
|
854
|
-
@telemetry.add_stmt_params_to_df(
|
855
|
-
project=_PROJECT,
|
856
|
-
subproject=_SUBPROJECT,
|
857
|
-
custom_tags=dict([("autogen", True)]),
|
858
|
-
)
|
859
820
|
def kneighbors(
|
860
821
|
self,
|
861
822
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -915,18 +876,28 @@ class KernelDensity(BaseTransformer):
|
|
915
876
|
# For classifier, the type of predict is the same as the type of label
|
916
877
|
if self._sklearn_object._estimator_type == 'classifier':
|
917
878
|
# label columns is the desired type for output
|
918
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
879
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
919
880
|
# rename the output columns
|
920
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
881
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
882
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
883
|
+
([] if self._drop_input_cols else inputs)
|
884
|
+
+ outputs)
|
885
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
886
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
887
|
+
# Clusterer returns int64 cluster labels.
|
888
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
889
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
921
890
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
922
891
|
([] if self._drop_input_cols else inputs)
|
923
892
|
+ outputs)
|
893
|
+
|
924
894
|
# For regressor, the type of predict is float64
|
925
895
|
elif self._sklearn_object._estimator_type == 'regressor':
|
926
896
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
927
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
928
898
|
([] if self._drop_input_cols else inputs)
|
929
899
|
+ outputs)
|
900
|
+
|
930
901
|
for prob_func in PROB_FUNCTIONS:
|
931
902
|
if hasattr(self, prob_func):
|
932
903
|
output_cols_prefix: str = f"{prob_func}_"
|