snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NearestCentroid(BaseTransformer):
|
57
58
|
r"""Nearest centroid classifier
|
58
59
|
For more details on this class, see [sklearn.neighbors.NearestCentroid]
|
@@ -60,52 +61,68 @@ class NearestCentroid(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
metric: str or callable, default="euclidean"
|
64
|
-
Metric to use for distance computation. See the documentation of
|
65
|
-
`scipy.spatial.distance
|
66
|
-
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
67
|
-
the metrics listed in
|
68
|
-
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
69
|
-
values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
|
70
|
-
supported.
|
71
|
-
|
72
|
-
The centroids for the samples corresponding to each class is
|
73
|
-
the point from which the sum of the distances (according to the metric)
|
74
|
-
of all samples that belong to that particular class are minimized.
|
75
|
-
If the `"manhattan"` metric is provided, this centroid is the median
|
76
|
-
and for all other metrics, the centroid is now set to be the mean.
|
77
|
-
|
78
|
-
shrink_threshold: float, default=None
|
79
|
-
Threshold for shrinking centroids to remove features.
|
80
64
|
|
81
65
|
input_cols: Optional[Union[str, List[str]]]
|
82
66
|
A string or list of strings representing column names that contain features.
|
83
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
84
|
-
the columns specified by label_cols
|
85
|
-
considered input columns.
|
86
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
87
72
|
label_cols: Optional[Union[str, List[str]]]
|
88
73
|
A string or list of strings representing column names that contain labels.
|
89
|
-
|
90
|
-
|
91
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
92
76
|
|
93
77
|
output_cols: Optional[Union[str, List[str]]]
|
94
78
|
A string or list of strings representing column names that will store the
|
95
79
|
output of predict and transform operations. The length of output_cols must
|
96
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
97
81
|
transformer class used.
|
98
|
-
If this parameter
|
99
|
-
|
100
|
-
|
101
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
102
91
|
|
103
92
|
sample_weight_col: Optional[str]
|
104
93
|
A string representing the column name containing the sample weights.
|
105
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
106
105
|
|
107
106
|
drop_input_cols: Optional[bool], default=False
|
108
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
metric: str or callable, default="euclidean"
|
110
|
+
Metric to use for distance computation. See the documentation of
|
111
|
+
`scipy.spatial.distance
|
112
|
+
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
113
|
+
the metrics listed in
|
114
|
+
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
115
|
+
values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
|
116
|
+
supported.
|
117
|
+
|
118
|
+
The centroids for the samples corresponding to each class is
|
119
|
+
the point from which the sum of the distances (according to the metric)
|
120
|
+
of all samples that belong to that particular class are minimized.
|
121
|
+
If the `"manhattan"` metric is provided, this centroid is the median
|
122
|
+
and for all other metrics, the centroid is now set to be the mean.
|
123
|
+
|
124
|
+
shrink_threshold: float, default=None
|
125
|
+
Threshold for shrinking centroids to remove features.
|
109
126
|
"""
|
110
127
|
|
111
128
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -116,6 +133,7 @@ class NearestCentroid(BaseTransformer):
|
|
116
133
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
117
134
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
118
135
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
136
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
119
137
|
drop_input_cols: Optional[bool] = False,
|
120
138
|
sample_weight_col: Optional[str] = None,
|
121
139
|
) -> None:
|
@@ -124,9 +142,10 @@ class NearestCentroid(BaseTransformer):
|
|
124
142
|
self.set_input_cols(input_cols)
|
125
143
|
self.set_output_cols(output_cols)
|
126
144
|
self.set_label_cols(label_cols)
|
145
|
+
self.set_passthrough_cols(passthrough_cols)
|
127
146
|
self.set_drop_input_cols(drop_input_cols)
|
128
147
|
self.set_sample_weight_col(sample_weight_col)
|
129
|
-
deps = set(
|
148
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
130
149
|
|
131
150
|
self._deps = list(deps)
|
132
151
|
|
@@ -136,13 +155,14 @@ class NearestCentroid(BaseTransformer):
|
|
136
155
|
args=init_args,
|
137
156
|
klass=sklearn.neighbors.NearestCentroid
|
138
157
|
)
|
139
|
-
self._sklearn_object = sklearn.neighbors.NearestCentroid(
|
158
|
+
self._sklearn_object: Any = sklearn.neighbors.NearestCentroid(
|
140
159
|
**cleaned_up_init_args,
|
141
160
|
)
|
142
161
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
143
162
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
144
163
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
145
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
164
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
165
|
+
self._autogenerated = True
|
146
166
|
|
147
167
|
def _get_rand_id(self) -> str:
|
148
168
|
"""
|
@@ -153,24 +173,6 @@ class NearestCentroid(BaseTransformer):
|
|
153
173
|
"""
|
154
174
|
return str(uuid4()).replace("-", "_").upper()
|
155
175
|
|
156
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
157
|
-
"""
|
158
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
159
|
-
|
160
|
-
Args:
|
161
|
-
dataset: Input dataset.
|
162
|
-
"""
|
163
|
-
if not self.input_cols:
|
164
|
-
cols = [
|
165
|
-
c for c in dataset.columns
|
166
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
167
|
-
]
|
168
|
-
self.set_input_cols(input_cols=cols)
|
169
|
-
|
170
|
-
if not self.output_cols:
|
171
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
172
|
-
self.set_output_cols(output_cols=cols)
|
173
|
-
|
174
176
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NearestCentroid":
|
175
177
|
"""
|
176
178
|
Input columns setter.
|
@@ -216,54 +218,48 @@ class NearestCentroid(BaseTransformer):
|
|
216
218
|
self
|
217
219
|
"""
|
218
220
|
self._infer_input_output_cols(dataset)
|
219
|
-
if isinstance(dataset,
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
self.
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
221
|
+
if isinstance(dataset, DataFrame):
|
222
|
+
session = dataset._session
|
223
|
+
assert session is not None # keep mypy happy
|
224
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
225
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
226
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
227
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
228
|
+
|
229
|
+
# Specify input columns so column pruning will be enforced
|
230
|
+
selected_cols = self._get_active_columns()
|
231
|
+
if len(selected_cols) > 0:
|
232
|
+
dataset = dataset.select(selected_cols)
|
233
|
+
|
234
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
235
|
+
|
236
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
237
|
+
if SNOWML_SPROC_ENV in os.environ:
|
238
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
239
|
+
project=_PROJECT,
|
240
|
+
subproject=_SUBPROJECT,
|
241
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
|
242
|
+
api_calls=[Session.call],
|
243
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
244
|
+
)
|
245
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
246
|
+
pd_df.columns = dataset.columns
|
247
|
+
dataset = pd_df
|
248
|
+
|
249
|
+
model_trainer = ModelTrainerBuilder.build(
|
250
|
+
estimator=self._sklearn_object,
|
251
|
+
dataset=dataset,
|
252
|
+
input_cols=self.input_cols,
|
253
|
+
label_cols=self.label_cols,
|
254
|
+
sample_weight_col=self.sample_weight_col,
|
255
|
+
autogenerated=self._autogenerated,
|
256
|
+
subproject=_SUBPROJECT
|
257
|
+
)
|
258
|
+
self._sklearn_object = model_trainer.train()
|
235
259
|
self._is_fitted = True
|
236
260
|
self._get_model_signatures(dataset)
|
237
261
|
return self
|
238
262
|
|
239
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
240
|
-
session = dataset._session
|
241
|
-
assert session is not None # keep mypy happy
|
242
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
243
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
244
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
245
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
246
|
-
|
247
|
-
# Specify input columns so column pruning will be enforced
|
248
|
-
selected_cols = self._get_active_columns()
|
249
|
-
if len(selected_cols) > 0:
|
250
|
-
dataset = dataset.select(selected_cols)
|
251
|
-
|
252
|
-
estimator = self._sklearn_object
|
253
|
-
assert estimator is not None # Keep mypy happy
|
254
|
-
|
255
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
256
|
-
|
257
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
258
|
-
dataset,
|
259
|
-
session,
|
260
|
-
estimator,
|
261
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
262
|
-
self.input_cols,
|
263
|
-
self.label_cols,
|
264
|
-
self.sample_weight_col,
|
265
|
-
)
|
266
|
-
|
267
263
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
268
264
|
if self._drop_input_cols:
|
269
265
|
return []
|
@@ -451,11 +447,6 @@ class NearestCentroid(BaseTransformer):
|
|
451
447
|
subproject=_SUBPROJECT,
|
452
448
|
custom_tags=dict([("autogen", True)]),
|
453
449
|
)
|
454
|
-
@telemetry.add_stmt_params_to_df(
|
455
|
-
project=_PROJECT,
|
456
|
-
subproject=_SUBPROJECT,
|
457
|
-
custom_tags=dict([("autogen", True)]),
|
458
|
-
)
|
459
450
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
460
451
|
"""Perform classification on an array of test vectors `X`
|
461
452
|
For more details on this function, see [sklearn.neighbors.NearestCentroid.predict]
|
@@ -509,11 +500,6 @@ class NearestCentroid(BaseTransformer):
|
|
509
500
|
subproject=_SUBPROJECT,
|
510
501
|
custom_tags=dict([("autogen", True)]),
|
511
502
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
503
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
504
|
"""Method not supported for this class.
|
519
505
|
|
@@ -570,7 +556,8 @@ class NearestCentroid(BaseTransformer):
|
|
570
556
|
if False:
|
571
557
|
self.fit(dataset)
|
572
558
|
assert self._sklearn_object is not None
|
573
|
-
|
559
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
560
|
+
return labels
|
574
561
|
else:
|
575
562
|
raise NotImplementedError
|
576
563
|
|
@@ -606,6 +593,7 @@ class NearestCentroid(BaseTransformer):
|
|
606
593
|
output_cols = []
|
607
594
|
|
608
595
|
# Make sure column names are valid snowflake identifiers.
|
596
|
+
assert output_cols is not None # Make MyPy happy
|
609
597
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
610
598
|
|
611
599
|
return rv
|
@@ -616,11 +604,6 @@ class NearestCentroid(BaseTransformer):
|
|
616
604
|
subproject=_SUBPROJECT,
|
617
605
|
custom_tags=dict([("autogen", True)]),
|
618
606
|
)
|
619
|
-
@telemetry.add_stmt_params_to_df(
|
620
|
-
project=_PROJECT,
|
621
|
-
subproject=_SUBPROJECT,
|
622
|
-
custom_tags=dict([("autogen", True)]),
|
623
|
-
)
|
624
607
|
def predict_proba(
|
625
608
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
626
609
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -661,11 +644,6 @@ class NearestCentroid(BaseTransformer):
|
|
661
644
|
subproject=_SUBPROJECT,
|
662
645
|
custom_tags=dict([("autogen", True)]),
|
663
646
|
)
|
664
|
-
@telemetry.add_stmt_params_to_df(
|
665
|
-
project=_PROJECT,
|
666
|
-
subproject=_SUBPROJECT,
|
667
|
-
custom_tags=dict([("autogen", True)]),
|
668
|
-
)
|
669
647
|
def predict_log_proba(
|
670
648
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
671
649
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -702,16 +680,6 @@ class NearestCentroid(BaseTransformer):
|
|
702
680
|
return output_df
|
703
681
|
|
704
682
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
705
|
-
@telemetry.send_api_usage_telemetry(
|
706
|
-
project=_PROJECT,
|
707
|
-
subproject=_SUBPROJECT,
|
708
|
-
custom_tags=dict([("autogen", True)]),
|
709
|
-
)
|
710
|
-
@telemetry.add_stmt_params_to_df(
|
711
|
-
project=_PROJECT,
|
712
|
-
subproject=_SUBPROJECT,
|
713
|
-
custom_tags=dict([("autogen", True)]),
|
714
|
-
)
|
715
683
|
def decision_function(
|
716
684
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
717
685
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -812,11 +780,6 @@ class NearestCentroid(BaseTransformer):
|
|
812
780
|
subproject=_SUBPROJECT,
|
813
781
|
custom_tags=dict([("autogen", True)]),
|
814
782
|
)
|
815
|
-
@telemetry.add_stmt_params_to_df(
|
816
|
-
project=_PROJECT,
|
817
|
-
subproject=_SUBPROJECT,
|
818
|
-
custom_tags=dict([("autogen", True)]),
|
819
|
-
)
|
820
783
|
def kneighbors(
|
821
784
|
self,
|
822
785
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -876,18 +839,28 @@ class NearestCentroid(BaseTransformer):
|
|
876
839
|
# For classifier, the type of predict is the same as the type of label
|
877
840
|
if self._sklearn_object._estimator_type == 'classifier':
|
878
841
|
# label columns is the desired type for output
|
879
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
842
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
880
843
|
# rename the output columns
|
881
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
844
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
882
845
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
883
846
|
([] if self._drop_input_cols else inputs)
|
884
847
|
+ outputs)
|
848
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
849
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
850
|
+
# Clusterer returns int64 cluster labels.
|
851
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
852
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
853
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
854
|
+
([] if self._drop_input_cols else inputs)
|
855
|
+
+ outputs)
|
856
|
+
|
885
857
|
# For regressor, the type of predict is float64
|
886
858
|
elif self._sklearn_object._estimator_type == 'regressor':
|
887
859
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
888
860
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
889
861
|
([] if self._drop_input_cols else inputs)
|
890
862
|
+ outputs)
|
863
|
+
|
891
864
|
for prob_func in PROB_FUNCTIONS:
|
892
865
|
if hasattr(self, prob_func):
|
893
866
|
output_cols_prefix: str = f"{prob_func}_"
|