snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NearestCentroid(BaseTransformer):
57
58
  r"""Nearest centroid classifier
58
59
  For more details on this class, see [sklearn.neighbors.NearestCentroid]
@@ -60,52 +61,68 @@ class NearestCentroid(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- metric: str or callable, default="euclidean"
64
- Metric to use for distance computation. See the documentation of
65
- `scipy.spatial.distance
66
- <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
67
- the metrics listed in
68
- :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
69
- values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
70
- supported.
71
-
72
- The centroids for the samples corresponding to each class is
73
- the point from which the sum of the distances (according to the metric)
74
- of all samples that belong to that particular class are minimized.
75
- If the `"manhattan"` metric is provided, this centroid is the median
76
- and for all other metrics, the centroid is now set to be the mean.
77
-
78
- shrink_threshold: float, default=None
79
- Threshold for shrinking centroids to remove features.
80
64
 
81
65
  input_cols: Optional[Union[str, List[str]]]
82
66
  A string or list of strings representing column names that contain features.
83
67
  If this parameter is not specified, all columns in the input DataFrame except
84
- the columns specified by label_cols and sample_weight_col parameters are
85
- considered input columns.
86
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
87
72
  label_cols: Optional[Union[str, List[str]]]
88
73
  A string or list of strings representing column names that contain labels.
89
- This is a required param for estimators, as there is no way to infer these
90
- columns. If this parameter is not specified, then object is fitted without
91
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
92
76
 
93
77
  output_cols: Optional[Union[str, List[str]]]
94
78
  A string or list of strings representing column names that will store the
95
79
  output of predict and transform operations. The length of output_cols must
96
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
97
81
  transformer class used.
98
- If this parameter is not specified, output column names are derived by
99
- adding an OUTPUT_ prefix to the label column names. These inferred output
100
- column names work for estimator's predict() method, but output_cols must
101
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
102
91
 
103
92
  sample_weight_col: Optional[str]
104
93
  A string representing the column name containing the sample weights.
105
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
106
105
 
107
106
  drop_input_cols: Optional[bool], default=False
108
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ metric: str or callable, default="euclidean"
110
+ Metric to use for distance computation. See the documentation of
111
+ `scipy.spatial.distance
112
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
113
+ the metrics listed in
114
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
115
+ values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
116
+ supported.
117
+
118
+ The centroids for the samples corresponding to each class is
119
+ the point from which the sum of the distances (according to the metric)
120
+ of all samples that belong to that particular class are minimized.
121
+ If the `"manhattan"` metric is provided, this centroid is the median
122
+ and for all other metrics, the centroid is now set to be the mean.
123
+
124
+ shrink_threshold: float, default=None
125
+ Threshold for shrinking centroids to remove features.
109
126
  """
110
127
 
111
128
  def __init__( # type: ignore[no-untyped-def]
@@ -116,6 +133,7 @@ class NearestCentroid(BaseTransformer):
116
133
  input_cols: Optional[Union[str, Iterable[str]]] = None,
117
134
  output_cols: Optional[Union[str, Iterable[str]]] = None,
118
135
  label_cols: Optional[Union[str, Iterable[str]]] = None,
136
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
119
137
  drop_input_cols: Optional[bool] = False,
120
138
  sample_weight_col: Optional[str] = None,
121
139
  ) -> None:
@@ -124,9 +142,10 @@ class NearestCentroid(BaseTransformer):
124
142
  self.set_input_cols(input_cols)
125
143
  self.set_output_cols(output_cols)
126
144
  self.set_label_cols(label_cols)
145
+ self.set_passthrough_cols(passthrough_cols)
127
146
  self.set_drop_input_cols(drop_input_cols)
128
147
  self.set_sample_weight_col(sample_weight_col)
129
- deps = set(SklearnWrapperProvider().dependencies)
148
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
130
149
 
131
150
  self._deps = list(deps)
132
151
 
@@ -136,13 +155,14 @@ class NearestCentroid(BaseTransformer):
136
155
  args=init_args,
137
156
  klass=sklearn.neighbors.NearestCentroid
138
157
  )
139
- self._sklearn_object = sklearn.neighbors.NearestCentroid(
158
+ self._sklearn_object: Any = sklearn.neighbors.NearestCentroid(
140
159
  **cleaned_up_init_args,
141
160
  )
142
161
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
143
162
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
144
163
  self._snowpark_cols: Optional[List[str]] = self.input_cols
145
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
164
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
165
+ self._autogenerated = True
146
166
 
147
167
  def _get_rand_id(self) -> str:
148
168
  """
@@ -153,24 +173,6 @@ class NearestCentroid(BaseTransformer):
153
173
  """
154
174
  return str(uuid4()).replace("-", "_").upper()
155
175
 
156
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
157
- """
158
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
159
-
160
- Args:
161
- dataset: Input dataset.
162
- """
163
- if not self.input_cols:
164
- cols = [
165
- c for c in dataset.columns
166
- if c not in self.get_label_cols() and c != self.sample_weight_col
167
- ]
168
- self.set_input_cols(input_cols=cols)
169
-
170
- if not self.output_cols:
171
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
172
- self.set_output_cols(output_cols=cols)
173
-
174
176
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NearestCentroid":
175
177
  """
176
178
  Input columns setter.
@@ -216,54 +218,48 @@ class NearestCentroid(BaseTransformer):
216
218
  self
217
219
  """
218
220
  self._infer_input_output_cols(dataset)
219
- if isinstance(dataset, pd.DataFrame):
220
- assert self._sklearn_object is not None # keep mypy happy
221
- self._sklearn_object = self._handlers.fit_pandas(
222
- dataset,
223
- self._sklearn_object,
224
- self.input_cols,
225
- self.label_cols,
226
- self.sample_weight_col
227
- )
228
- elif isinstance(dataset, DataFrame):
229
- self._fit_snowpark(dataset)
230
- else:
231
- raise TypeError(
232
- f"Unexpected dataset type: {type(dataset)}."
233
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
234
- )
221
+ if isinstance(dataset, DataFrame):
222
+ session = dataset._session
223
+ assert session is not None # keep mypy happy
224
+ # Validate that key package version in user workspace are supported in snowflake conda channel
225
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
226
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
227
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
228
+
229
+ # Specify input columns so column pruning will be enforced
230
+ selected_cols = self._get_active_columns()
231
+ if len(selected_cols) > 0:
232
+ dataset = dataset.select(selected_cols)
233
+
234
+ self._snowpark_cols = dataset.select(self.input_cols).columns
235
+
236
+ # If we are already in a stored procedure, no need to kick off another one.
237
+ if SNOWML_SPROC_ENV in os.environ:
238
+ statement_params = telemetry.get_function_usage_statement_params(
239
+ project=_PROJECT,
240
+ subproject=_SUBPROJECT,
241
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
242
+ api_calls=[Session.call],
243
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
244
+ )
245
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
246
+ pd_df.columns = dataset.columns
247
+ dataset = pd_df
248
+
249
+ model_trainer = ModelTrainerBuilder.build(
250
+ estimator=self._sklearn_object,
251
+ dataset=dataset,
252
+ input_cols=self.input_cols,
253
+ label_cols=self.label_cols,
254
+ sample_weight_col=self.sample_weight_col,
255
+ autogenerated=self._autogenerated,
256
+ subproject=_SUBPROJECT
257
+ )
258
+ self._sklearn_object = model_trainer.train()
235
259
  self._is_fitted = True
236
260
  self._get_model_signatures(dataset)
237
261
  return self
238
262
 
239
- def _fit_snowpark(self, dataset: DataFrame) -> None:
240
- session = dataset._session
241
- assert session is not None # keep mypy happy
242
- # Validate that key package version in user workspace are supported in snowflake conda channel
243
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
244
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
245
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
246
-
247
- # Specify input columns so column pruning will be enforced
248
- selected_cols = self._get_active_columns()
249
- if len(selected_cols) > 0:
250
- dataset = dataset.select(selected_cols)
251
-
252
- estimator = self._sklearn_object
253
- assert estimator is not None # Keep mypy happy
254
-
255
- self._snowpark_cols = dataset.select(self.input_cols).columns
256
-
257
- self._sklearn_object = self._handlers.fit_snowpark(
258
- dataset,
259
- session,
260
- estimator,
261
- ["snowflake-snowpark-python"] + self._get_dependencies(),
262
- self.input_cols,
263
- self.label_cols,
264
- self.sample_weight_col,
265
- )
266
-
267
263
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
268
264
  if self._drop_input_cols:
269
265
  return []
@@ -451,11 +447,6 @@ class NearestCentroid(BaseTransformer):
451
447
  subproject=_SUBPROJECT,
452
448
  custom_tags=dict([("autogen", True)]),
453
449
  )
454
- @telemetry.add_stmt_params_to_df(
455
- project=_PROJECT,
456
- subproject=_SUBPROJECT,
457
- custom_tags=dict([("autogen", True)]),
458
- )
459
450
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
460
451
  """Perform classification on an array of test vectors `X`
461
452
  For more details on this function, see [sklearn.neighbors.NearestCentroid.predict]
@@ -509,11 +500,6 @@ class NearestCentroid(BaseTransformer):
509
500
  subproject=_SUBPROJECT,
510
501
  custom_tags=dict([("autogen", True)]),
511
502
  )
512
- @telemetry.add_stmt_params_to_df(
513
- project=_PROJECT,
514
- subproject=_SUBPROJECT,
515
- custom_tags=dict([("autogen", True)]),
516
- )
517
503
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
518
504
  """Method not supported for this class.
519
505
 
@@ -570,7 +556,8 @@ class NearestCentroid(BaseTransformer):
570
556
  if False:
571
557
  self.fit(dataset)
572
558
  assert self._sklearn_object is not None
573
- return self._sklearn_object.labels_
559
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
560
+ return labels
574
561
  else:
575
562
  raise NotImplementedError
576
563
 
@@ -606,6 +593,7 @@ class NearestCentroid(BaseTransformer):
606
593
  output_cols = []
607
594
 
608
595
  # Make sure column names are valid snowflake identifiers.
596
+ assert output_cols is not None # Make MyPy happy
609
597
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
610
598
 
611
599
  return rv
@@ -616,11 +604,6 @@ class NearestCentroid(BaseTransformer):
616
604
  subproject=_SUBPROJECT,
617
605
  custom_tags=dict([("autogen", True)]),
618
606
  )
619
- @telemetry.add_stmt_params_to_df(
620
- project=_PROJECT,
621
- subproject=_SUBPROJECT,
622
- custom_tags=dict([("autogen", True)]),
623
- )
624
607
  def predict_proba(
625
608
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
626
609
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -661,11 +644,6 @@ class NearestCentroid(BaseTransformer):
661
644
  subproject=_SUBPROJECT,
662
645
  custom_tags=dict([("autogen", True)]),
663
646
  )
664
- @telemetry.add_stmt_params_to_df(
665
- project=_PROJECT,
666
- subproject=_SUBPROJECT,
667
- custom_tags=dict([("autogen", True)]),
668
- )
669
647
  def predict_log_proba(
670
648
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
671
649
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -702,16 +680,6 @@ class NearestCentroid(BaseTransformer):
702
680
  return output_df
703
681
 
704
682
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
705
- @telemetry.send_api_usage_telemetry(
706
- project=_PROJECT,
707
- subproject=_SUBPROJECT,
708
- custom_tags=dict([("autogen", True)]),
709
- )
710
- @telemetry.add_stmt_params_to_df(
711
- project=_PROJECT,
712
- subproject=_SUBPROJECT,
713
- custom_tags=dict([("autogen", True)]),
714
- )
715
683
  def decision_function(
716
684
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
717
685
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -812,11 +780,6 @@ class NearestCentroid(BaseTransformer):
812
780
  subproject=_SUBPROJECT,
813
781
  custom_tags=dict([("autogen", True)]),
814
782
  )
815
- @telemetry.add_stmt_params_to_df(
816
- project=_PROJECT,
817
- subproject=_SUBPROJECT,
818
- custom_tags=dict([("autogen", True)]),
819
- )
820
783
  def kneighbors(
821
784
  self,
822
785
  dataset: Union[DataFrame, pd.DataFrame],
@@ -876,18 +839,28 @@ class NearestCentroid(BaseTransformer):
876
839
  # For classifier, the type of predict is the same as the type of label
877
840
  if self._sklearn_object._estimator_type == 'classifier':
878
841
  # label columns is the desired type for output
879
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
842
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
880
843
  # rename the output columns
881
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
844
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
882
845
  self._model_signature_dict["predict"] = ModelSignature(inputs,
883
846
  ([] if self._drop_input_cols else inputs)
884
847
  + outputs)
848
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
849
+ # For outlier models, returns -1 for outliers and 1 for inliers.
850
+ # Clusterer returns int64 cluster labels.
851
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
852
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
853
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
854
+ ([] if self._drop_input_cols else inputs)
855
+ + outputs)
856
+
885
857
  # For regressor, the type of predict is float64
886
858
  elif self._sklearn_object._estimator_type == 'regressor':
887
859
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
888
860
  self._model_signature_dict["predict"] = ModelSignature(inputs,
889
861
  ([] if self._drop_input_cols else inputs)
890
862
  + outputs)
863
+
891
864
  for prob_func in PROB_FUNCTIONS:
892
865
  if hasattr(self, prob_func):
893
866
  output_cols_prefix: str = f"{prob_func}_"