snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NeighborhoodComponentsAnalysis(BaseTransformer):
|
57
58
|
r"""Neighborhood Components Analysis
|
58
59
|
For more details on this class, see [sklearn.neighbors.NeighborhoodComponentsAnalysis]
|
@@ -60,6 +61,51 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_components: int, default=None
|
64
110
|
Preferred dimensionality of the projected space.
|
65
111
|
If None it will be set to `n_features`.
|
@@ -136,35 +182,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
136
182
|
argument to PCA when initializing the transformation. Pass an int
|
137
183
|
for reproducible results across multiple function calls.
|
138
184
|
See :term:`Glossary <random_state>`.
|
139
|
-
|
140
|
-
input_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain features.
|
142
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
143
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
144
|
-
considered input columns.
|
145
|
-
|
146
|
-
label_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that contain labels.
|
148
|
-
This is a required param for estimators, as there is no way to infer these
|
149
|
-
columns. If this parameter is not specified, then object is fitted without
|
150
|
-
labels (like a transformer).
|
151
|
-
|
152
|
-
output_cols: Optional[Union[str, List[str]]]
|
153
|
-
A string or list of strings representing column names that will store the
|
154
|
-
output of predict and transform operations. The length of output_cols must
|
155
|
-
match the expected number of output columns from the specific estimator or
|
156
|
-
transformer class used.
|
157
|
-
If this parameter is not specified, output column names are derived by
|
158
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
159
|
-
column names work for estimator's predict() method, but output_cols must
|
160
|
-
be set explicitly for transformers.
|
161
|
-
|
162
|
-
sample_weight_col: Optional[str]
|
163
|
-
A string representing the column name containing the sample weights.
|
164
|
-
This argument is only required when working with weighted datasets.
|
165
|
-
|
166
|
-
drop_input_cols: Optional[bool], default=False
|
167
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
168
185
|
"""
|
169
186
|
|
170
187
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -181,6 +198,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
181
198
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
199
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
183
200
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
202
|
drop_input_cols: Optional[bool] = False,
|
185
203
|
sample_weight_col: Optional[str] = None,
|
186
204
|
) -> None:
|
@@ -189,9 +207,10 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
189
207
|
self.set_input_cols(input_cols)
|
190
208
|
self.set_output_cols(output_cols)
|
191
209
|
self.set_label_cols(label_cols)
|
210
|
+
self.set_passthrough_cols(passthrough_cols)
|
192
211
|
self.set_drop_input_cols(drop_input_cols)
|
193
212
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
214
|
|
196
215
|
self._deps = list(deps)
|
197
216
|
|
@@ -207,13 +226,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
207
226
|
args=init_args,
|
208
227
|
klass=sklearn.neighbors.NeighborhoodComponentsAnalysis
|
209
228
|
)
|
210
|
-
self._sklearn_object = sklearn.neighbors.NeighborhoodComponentsAnalysis(
|
229
|
+
self._sklearn_object: Any = sklearn.neighbors.NeighborhoodComponentsAnalysis(
|
211
230
|
**cleaned_up_init_args,
|
212
231
|
)
|
213
232
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
214
233
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
215
234
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
216
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
235
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
236
|
+
self._autogenerated = True
|
217
237
|
|
218
238
|
def _get_rand_id(self) -> str:
|
219
239
|
"""
|
@@ -224,24 +244,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
224
244
|
"""
|
225
245
|
return str(uuid4()).replace("-", "_").upper()
|
226
246
|
|
227
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
228
|
-
"""
|
229
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
230
|
-
|
231
|
-
Args:
|
232
|
-
dataset: Input dataset.
|
233
|
-
"""
|
234
|
-
if not self.input_cols:
|
235
|
-
cols = [
|
236
|
-
c for c in dataset.columns
|
237
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
238
|
-
]
|
239
|
-
self.set_input_cols(input_cols=cols)
|
240
|
-
|
241
|
-
if not self.output_cols:
|
242
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
243
|
-
self.set_output_cols(output_cols=cols)
|
244
|
-
|
245
247
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NeighborhoodComponentsAnalysis":
|
246
248
|
"""
|
247
249
|
Input columns setter.
|
@@ -287,54 +289,48 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
287
289
|
self
|
288
290
|
"""
|
289
291
|
self._infer_input_output_cols(dataset)
|
290
|
-
if isinstance(dataset,
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
self.
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
292
|
+
if isinstance(dataset, DataFrame):
|
293
|
+
session = dataset._session
|
294
|
+
assert session is not None # keep mypy happy
|
295
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
296
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
297
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
298
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
299
|
+
|
300
|
+
# Specify input columns so column pruning will be enforced
|
301
|
+
selected_cols = self._get_active_columns()
|
302
|
+
if len(selected_cols) > 0:
|
303
|
+
dataset = dataset.select(selected_cols)
|
304
|
+
|
305
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
306
|
+
|
307
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
308
|
+
if SNOWML_SPROC_ENV in os.environ:
|
309
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
310
|
+
project=_PROJECT,
|
311
|
+
subproject=_SUBPROJECT,
|
312
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NeighborhoodComponentsAnalysis.__class__.__name__),
|
313
|
+
api_calls=[Session.call],
|
314
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
315
|
+
)
|
316
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
|
+
pd_df.columns = dataset.columns
|
318
|
+
dataset = pd_df
|
319
|
+
|
320
|
+
model_trainer = ModelTrainerBuilder.build(
|
321
|
+
estimator=self._sklearn_object,
|
322
|
+
dataset=dataset,
|
323
|
+
input_cols=self.input_cols,
|
324
|
+
label_cols=self.label_cols,
|
325
|
+
sample_weight_col=self.sample_weight_col,
|
326
|
+
autogenerated=self._autogenerated,
|
327
|
+
subproject=_SUBPROJECT
|
328
|
+
)
|
329
|
+
self._sklearn_object = model_trainer.train()
|
306
330
|
self._is_fitted = True
|
307
331
|
self._get_model_signatures(dataset)
|
308
332
|
return self
|
309
333
|
|
310
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
311
|
-
session = dataset._session
|
312
|
-
assert session is not None # keep mypy happy
|
313
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
314
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
315
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
316
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
-
|
318
|
-
# Specify input columns so column pruning will be enforced
|
319
|
-
selected_cols = self._get_active_columns()
|
320
|
-
if len(selected_cols) > 0:
|
321
|
-
dataset = dataset.select(selected_cols)
|
322
|
-
|
323
|
-
estimator = self._sklearn_object
|
324
|
-
assert estimator is not None # Keep mypy happy
|
325
|
-
|
326
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
|
-
|
328
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
329
|
-
dataset,
|
330
|
-
session,
|
331
|
-
estimator,
|
332
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
333
|
-
self.input_cols,
|
334
|
-
self.label_cols,
|
335
|
-
self.sample_weight_col,
|
336
|
-
)
|
337
|
-
|
338
334
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
339
335
|
if self._drop_input_cols:
|
340
336
|
return []
|
@@ -522,11 +518,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
522
518
|
subproject=_SUBPROJECT,
|
523
519
|
custom_tags=dict([("autogen", True)]),
|
524
520
|
)
|
525
|
-
@telemetry.add_stmt_params_to_df(
|
526
|
-
project=_PROJECT,
|
527
|
-
subproject=_SUBPROJECT,
|
528
|
-
custom_tags=dict([("autogen", True)]),
|
529
|
-
)
|
530
521
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
531
522
|
"""Method not supported for this class.
|
532
523
|
|
@@ -578,11 +569,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
578
569
|
subproject=_SUBPROJECT,
|
579
570
|
custom_tags=dict([("autogen", True)]),
|
580
571
|
)
|
581
|
-
@telemetry.add_stmt_params_to_df(
|
582
|
-
project=_PROJECT,
|
583
|
-
subproject=_SUBPROJECT,
|
584
|
-
custom_tags=dict([("autogen", True)]),
|
585
|
-
)
|
586
572
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
587
573
|
"""Apply the learned transformation to the given data
|
588
574
|
For more details on this function, see [sklearn.neighbors.NeighborhoodComponentsAnalysis.transform]
|
@@ -641,7 +627,8 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
641
627
|
if False:
|
642
628
|
self.fit(dataset)
|
643
629
|
assert self._sklearn_object is not None
|
644
|
-
|
630
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
631
|
+
return labels
|
645
632
|
else:
|
646
633
|
raise NotImplementedError
|
647
634
|
|
@@ -677,6 +664,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
677
664
|
output_cols = []
|
678
665
|
|
679
666
|
# Make sure column names are valid snowflake identifiers.
|
667
|
+
assert output_cols is not None # Make MyPy happy
|
680
668
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
681
669
|
|
682
670
|
return rv
|
@@ -687,11 +675,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
687
675
|
subproject=_SUBPROJECT,
|
688
676
|
custom_tags=dict([("autogen", True)]),
|
689
677
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
678
|
def predict_proba(
|
696
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
697
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,11 +715,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
732
715
|
subproject=_SUBPROJECT,
|
733
716
|
custom_tags=dict([("autogen", True)]),
|
734
717
|
)
|
735
|
-
@telemetry.add_stmt_params_to_df(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
718
|
def predict_log_proba(
|
741
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
742
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -773,16 +751,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
773
751
|
return output_df
|
774
752
|
|
775
753
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
776
|
-
@telemetry.send_api_usage_telemetry(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
|
-
@telemetry.add_stmt_params_to_df(
|
782
|
-
project=_PROJECT,
|
783
|
-
subproject=_SUBPROJECT,
|
784
|
-
custom_tags=dict([("autogen", True)]),
|
785
|
-
)
|
786
754
|
def decision_function(
|
787
755
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
788
756
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -881,11 +849,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
881
849
|
subproject=_SUBPROJECT,
|
882
850
|
custom_tags=dict([("autogen", True)]),
|
883
851
|
)
|
884
|
-
@telemetry.add_stmt_params_to_df(
|
885
|
-
project=_PROJECT,
|
886
|
-
subproject=_SUBPROJECT,
|
887
|
-
custom_tags=dict([("autogen", True)]),
|
888
|
-
)
|
889
852
|
def kneighbors(
|
890
853
|
self,
|
891
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -945,18 +908,28 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
945
908
|
# For classifier, the type of predict is the same as the type of label
|
946
909
|
if self._sklearn_object._estimator_type == 'classifier':
|
947
910
|
# label columns is the desired type for output
|
948
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
911
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
949
912
|
# rename the output columns
|
950
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
913
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
951
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
952
915
|
([] if self._drop_input_cols else inputs)
|
953
916
|
+ outputs)
|
917
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
918
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
919
|
+
# Clusterer returns int64 cluster labels.
|
920
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
921
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
922
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
923
|
+
([] if self._drop_input_cols else inputs)
|
924
|
+
+ outputs)
|
925
|
+
|
954
926
|
# For regressor, the type of predict is float64
|
955
927
|
elif self._sklearn_object._estimator_type == 'regressor':
|
956
928
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
957
929
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
958
930
|
([] if self._drop_input_cols else inputs)
|
959
931
|
+ outputs)
|
932
|
+
|
960
933
|
for prob_func in PROB_FUNCTIONS:
|
961
934
|
if hasattr(self, prob_func):
|
962
935
|
output_cols_prefix: str = f"{prob_func}_"
|