snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MinCovDet(BaseTransformer):
|
57
58
|
r"""Minimum Covariance Determinant (MCD): robust estimator of covariance
|
58
59
|
For more details on this class, see [sklearn.covariance.MinCovDet]
|
@@ -60,6 +61,49 @@ class MinCovDet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
store_precision: bool, default=True
|
64
108
|
Specify if the estimated precision is stored.
|
65
109
|
|
@@ -83,35 +127,6 @@ class MinCovDet(BaseTransformer):
|
|
83
127
|
Determines the pseudo random number generator for shuffling the data.
|
84
128
|
Pass an int for reproducible results across multiple function calls.
|
85
129
|
See :term:`Glossary <random_state>`.
|
86
|
-
|
87
|
-
input_cols: Optional[Union[str, List[str]]]
|
88
|
-
A string or list of strings representing column names that contain features.
|
89
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
90
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
91
|
-
considered input columns.
|
92
|
-
|
93
|
-
label_cols: Optional[Union[str, List[str]]]
|
94
|
-
A string or list of strings representing column names that contain labels.
|
95
|
-
This is a required param for estimators, as there is no way to infer these
|
96
|
-
columns. If this parameter is not specified, then object is fitted without
|
97
|
-
labels (like a transformer).
|
98
|
-
|
99
|
-
output_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that will store the
|
101
|
-
output of predict and transform operations. The length of output_cols must
|
102
|
-
match the expected number of output columns from the specific estimator or
|
103
|
-
transformer class used.
|
104
|
-
If this parameter is not specified, output column names are derived by
|
105
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
106
|
-
column names work for estimator's predict() method, but output_cols must
|
107
|
-
be set explicitly for transformers.
|
108
|
-
|
109
|
-
sample_weight_col: Optional[str]
|
110
|
-
A string representing the column name containing the sample weights.
|
111
|
-
This argument is only required when working with weighted datasets.
|
112
|
-
|
113
|
-
drop_input_cols: Optional[bool], default=False
|
114
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
115
130
|
"""
|
116
131
|
|
117
132
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -124,6 +139,7 @@ class MinCovDet(BaseTransformer):
|
|
124
139
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
125
140
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
126
141
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
142
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
127
143
|
drop_input_cols: Optional[bool] = False,
|
128
144
|
sample_weight_col: Optional[str] = None,
|
129
145
|
) -> None:
|
@@ -132,9 +148,10 @@ class MinCovDet(BaseTransformer):
|
|
132
148
|
self.set_input_cols(input_cols)
|
133
149
|
self.set_output_cols(output_cols)
|
134
150
|
self.set_label_cols(label_cols)
|
151
|
+
self.set_passthrough_cols(passthrough_cols)
|
135
152
|
self.set_drop_input_cols(drop_input_cols)
|
136
153
|
self.set_sample_weight_col(sample_weight_col)
|
137
|
-
deps = set(
|
154
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
138
155
|
|
139
156
|
self._deps = list(deps)
|
140
157
|
|
@@ -146,13 +163,14 @@ class MinCovDet(BaseTransformer):
|
|
146
163
|
args=init_args,
|
147
164
|
klass=sklearn.covariance.MinCovDet
|
148
165
|
)
|
149
|
-
self._sklearn_object = sklearn.covariance.MinCovDet(
|
166
|
+
self._sklearn_object: Any = sklearn.covariance.MinCovDet(
|
150
167
|
**cleaned_up_init_args,
|
151
168
|
)
|
152
169
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
153
170
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
154
171
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
155
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
172
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
173
|
+
self._autogenerated = True
|
156
174
|
|
157
175
|
def _get_rand_id(self) -> str:
|
158
176
|
"""
|
@@ -163,24 +181,6 @@ class MinCovDet(BaseTransformer):
|
|
163
181
|
"""
|
164
182
|
return str(uuid4()).replace("-", "_").upper()
|
165
183
|
|
166
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
167
|
-
"""
|
168
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
169
|
-
|
170
|
-
Args:
|
171
|
-
dataset: Input dataset.
|
172
|
-
"""
|
173
|
-
if not self.input_cols:
|
174
|
-
cols = [
|
175
|
-
c for c in dataset.columns
|
176
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
177
|
-
]
|
178
|
-
self.set_input_cols(input_cols=cols)
|
179
|
-
|
180
|
-
if not self.output_cols:
|
181
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
182
|
-
self.set_output_cols(output_cols=cols)
|
183
|
-
|
184
184
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MinCovDet":
|
185
185
|
"""
|
186
186
|
Input columns setter.
|
@@ -226,54 +226,48 @@ class MinCovDet(BaseTransformer):
|
|
226
226
|
self
|
227
227
|
"""
|
228
228
|
self._infer_input_output_cols(dataset)
|
229
|
-
if isinstance(dataset,
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
self.
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
229
|
+
if isinstance(dataset, DataFrame):
|
230
|
+
session = dataset._session
|
231
|
+
assert session is not None # keep mypy happy
|
232
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
233
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
234
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
235
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
236
|
+
|
237
|
+
# Specify input columns so column pruning will be enforced
|
238
|
+
selected_cols = self._get_active_columns()
|
239
|
+
if len(selected_cols) > 0:
|
240
|
+
dataset = dataset.select(selected_cols)
|
241
|
+
|
242
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
|
+
|
244
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
245
|
+
if SNOWML_SPROC_ENV in os.environ:
|
246
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
247
|
+
project=_PROJECT,
|
248
|
+
subproject=_SUBPROJECT,
|
249
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MinCovDet.__class__.__name__),
|
250
|
+
api_calls=[Session.call],
|
251
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
252
|
+
)
|
253
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
254
|
+
pd_df.columns = dataset.columns
|
255
|
+
dataset = pd_df
|
256
|
+
|
257
|
+
model_trainer = ModelTrainerBuilder.build(
|
258
|
+
estimator=self._sklearn_object,
|
259
|
+
dataset=dataset,
|
260
|
+
input_cols=self.input_cols,
|
261
|
+
label_cols=self.label_cols,
|
262
|
+
sample_weight_col=self.sample_weight_col,
|
263
|
+
autogenerated=self._autogenerated,
|
264
|
+
subproject=_SUBPROJECT
|
265
|
+
)
|
266
|
+
self._sklearn_object = model_trainer.train()
|
245
267
|
self._is_fitted = True
|
246
268
|
self._get_model_signatures(dataset)
|
247
269
|
return self
|
248
270
|
|
249
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
250
|
-
session = dataset._session
|
251
|
-
assert session is not None # keep mypy happy
|
252
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
253
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
254
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
255
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
256
|
-
|
257
|
-
# Specify input columns so column pruning will be enforced
|
258
|
-
selected_cols = self._get_active_columns()
|
259
|
-
if len(selected_cols) > 0:
|
260
|
-
dataset = dataset.select(selected_cols)
|
261
|
-
|
262
|
-
estimator = self._sklearn_object
|
263
|
-
assert estimator is not None # Keep mypy happy
|
264
|
-
|
265
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
-
|
267
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
268
|
-
dataset,
|
269
|
-
session,
|
270
|
-
estimator,
|
271
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
272
|
-
self.input_cols,
|
273
|
-
self.label_cols,
|
274
|
-
self.sample_weight_col,
|
275
|
-
)
|
276
|
-
|
277
271
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
278
272
|
if self._drop_input_cols:
|
279
273
|
return []
|
@@ -461,11 +455,6 @@ class MinCovDet(BaseTransformer):
|
|
461
455
|
subproject=_SUBPROJECT,
|
462
456
|
custom_tags=dict([("autogen", True)]),
|
463
457
|
)
|
464
|
-
@telemetry.add_stmt_params_to_df(
|
465
|
-
project=_PROJECT,
|
466
|
-
subproject=_SUBPROJECT,
|
467
|
-
custom_tags=dict([("autogen", True)]),
|
468
|
-
)
|
469
458
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
470
459
|
"""Method not supported for this class.
|
471
460
|
|
@@ -517,11 +506,6 @@ class MinCovDet(BaseTransformer):
|
|
517
506
|
subproject=_SUBPROJECT,
|
518
507
|
custom_tags=dict([("autogen", True)]),
|
519
508
|
)
|
520
|
-
@telemetry.add_stmt_params_to_df(
|
521
|
-
project=_PROJECT,
|
522
|
-
subproject=_SUBPROJECT,
|
523
|
-
custom_tags=dict([("autogen", True)]),
|
524
|
-
)
|
525
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
526
510
|
"""Method not supported for this class.
|
527
511
|
|
@@ -578,7 +562,8 @@ class MinCovDet(BaseTransformer):
|
|
578
562
|
if False:
|
579
563
|
self.fit(dataset)
|
580
564
|
assert self._sklearn_object is not None
|
581
|
-
|
565
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
566
|
+
return labels
|
582
567
|
else:
|
583
568
|
raise NotImplementedError
|
584
569
|
|
@@ -614,6 +599,7 @@ class MinCovDet(BaseTransformer):
|
|
614
599
|
output_cols = []
|
615
600
|
|
616
601
|
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
617
603
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
604
|
|
619
605
|
return rv
|
@@ -624,11 +610,6 @@ class MinCovDet(BaseTransformer):
|
|
624
610
|
subproject=_SUBPROJECT,
|
625
611
|
custom_tags=dict([("autogen", True)]),
|
626
612
|
)
|
627
|
-
@telemetry.add_stmt_params_to_df(
|
628
|
-
project=_PROJECT,
|
629
|
-
subproject=_SUBPROJECT,
|
630
|
-
custom_tags=dict([("autogen", True)]),
|
631
|
-
)
|
632
613
|
def predict_proba(
|
633
614
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
634
615
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -669,11 +650,6 @@ class MinCovDet(BaseTransformer):
|
|
669
650
|
subproject=_SUBPROJECT,
|
670
651
|
custom_tags=dict([("autogen", True)]),
|
671
652
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
653
|
def predict_log_proba(
|
678
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
679
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -710,16 +686,6 @@ class MinCovDet(BaseTransformer):
|
|
710
686
|
return output_df
|
711
687
|
|
712
688
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
713
|
-
@telemetry.send_api_usage_telemetry(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
689
|
def decision_function(
|
724
690
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
725
691
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -820,11 +786,6 @@ class MinCovDet(BaseTransformer):
|
|
820
786
|
subproject=_SUBPROJECT,
|
821
787
|
custom_tags=dict([("autogen", True)]),
|
822
788
|
)
|
823
|
-
@telemetry.add_stmt_params_to_df(
|
824
|
-
project=_PROJECT,
|
825
|
-
subproject=_SUBPROJECT,
|
826
|
-
custom_tags=dict([("autogen", True)]),
|
827
|
-
)
|
828
789
|
def kneighbors(
|
829
790
|
self,
|
830
791
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -884,18 +845,28 @@ class MinCovDet(BaseTransformer):
|
|
884
845
|
# For classifier, the type of predict is the same as the type of label
|
885
846
|
if self._sklearn_object._estimator_type == 'classifier':
|
886
847
|
# label columns is the desired type for output
|
887
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
848
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
888
849
|
# rename the output columns
|
889
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
850
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
851
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
852
|
+
([] if self._drop_input_cols else inputs)
|
853
|
+
+ outputs)
|
854
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
855
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
856
|
+
# Clusterer returns int64 cluster labels.
|
857
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
858
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
890
859
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
891
860
|
([] if self._drop_input_cols else inputs)
|
892
861
|
+ outputs)
|
862
|
+
|
893
863
|
# For regressor, the type of predict is float64
|
894
864
|
elif self._sklearn_object._estimator_type == 'regressor':
|
895
865
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
896
866
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
897
867
|
([] if self._drop_input_cols else inputs)
|
898
868
|
+ outputs)
|
869
|
+
|
899
870
|
for prob_func in PROB_FUNCTIONS:
|
900
871
|
if hasattr(self, prob_func):
|
901
872
|
output_cols_prefix: str = f"{prob_func}_"
|