snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MinCovDet(BaseTransformer):
57
58
  r"""Minimum Covariance Determinant (MCD): robust estimator of covariance
58
59
  For more details on this class, see [sklearn.covariance.MinCovDet]
@@ -60,6 +61,49 @@ class MinCovDet(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  store_precision: bool, default=True
64
108
  Specify if the estimated precision is stored.
65
109
 
@@ -83,35 +127,6 @@ class MinCovDet(BaseTransformer):
83
127
  Determines the pseudo random number generator for shuffling the data.
84
128
  Pass an int for reproducible results across multiple function calls.
85
129
  See :term:`Glossary <random_state>`.
86
-
87
- input_cols: Optional[Union[str, List[str]]]
88
- A string or list of strings representing column names that contain features.
89
- If this parameter is not specified, all columns in the input DataFrame except
90
- the columns specified by label_cols and sample_weight_col parameters are
91
- considered input columns.
92
-
93
- label_cols: Optional[Union[str, List[str]]]
94
- A string or list of strings representing column names that contain labels.
95
- This is a required param for estimators, as there is no way to infer these
96
- columns. If this parameter is not specified, then object is fitted without
97
- labels (like a transformer).
98
-
99
- output_cols: Optional[Union[str, List[str]]]
100
- A string or list of strings representing column names that will store the
101
- output of predict and transform operations. The length of output_cols must
102
- match the expected number of output columns from the specific estimator or
103
- transformer class used.
104
- If this parameter is not specified, output column names are derived by
105
- adding an OUTPUT_ prefix to the label column names. These inferred output
106
- column names work for estimator's predict() method, but output_cols must
107
- be set explicitly for transformers.
108
-
109
- sample_weight_col: Optional[str]
110
- A string representing the column name containing the sample weights.
111
- This argument is only required when working with weighted datasets.
112
-
113
- drop_input_cols: Optional[bool], default=False
114
- If set, the response of predict(), transform() methods will not contain input columns.
115
130
  """
116
131
 
117
132
  def __init__( # type: ignore[no-untyped-def]
@@ -124,6 +139,7 @@ class MinCovDet(BaseTransformer):
124
139
  input_cols: Optional[Union[str, Iterable[str]]] = None,
125
140
  output_cols: Optional[Union[str, Iterable[str]]] = None,
126
141
  label_cols: Optional[Union[str, Iterable[str]]] = None,
142
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
127
143
  drop_input_cols: Optional[bool] = False,
128
144
  sample_weight_col: Optional[str] = None,
129
145
  ) -> None:
@@ -132,9 +148,10 @@ class MinCovDet(BaseTransformer):
132
148
  self.set_input_cols(input_cols)
133
149
  self.set_output_cols(output_cols)
134
150
  self.set_label_cols(label_cols)
151
+ self.set_passthrough_cols(passthrough_cols)
135
152
  self.set_drop_input_cols(drop_input_cols)
136
153
  self.set_sample_weight_col(sample_weight_col)
137
- deps = set(SklearnWrapperProvider().dependencies)
154
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
138
155
 
139
156
  self._deps = list(deps)
140
157
 
@@ -146,13 +163,14 @@ class MinCovDet(BaseTransformer):
146
163
  args=init_args,
147
164
  klass=sklearn.covariance.MinCovDet
148
165
  )
149
- self._sklearn_object = sklearn.covariance.MinCovDet(
166
+ self._sklearn_object: Any = sklearn.covariance.MinCovDet(
150
167
  **cleaned_up_init_args,
151
168
  )
152
169
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
153
170
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
154
171
  self._snowpark_cols: Optional[List[str]] = self.input_cols
155
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
172
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MinCovDet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
173
+ self._autogenerated = True
156
174
 
157
175
  def _get_rand_id(self) -> str:
158
176
  """
@@ -163,24 +181,6 @@ class MinCovDet(BaseTransformer):
163
181
  """
164
182
  return str(uuid4()).replace("-", "_").upper()
165
183
 
166
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
167
- """
168
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
169
-
170
- Args:
171
- dataset: Input dataset.
172
- """
173
- if not self.input_cols:
174
- cols = [
175
- c for c in dataset.columns
176
- if c not in self.get_label_cols() and c != self.sample_weight_col
177
- ]
178
- self.set_input_cols(input_cols=cols)
179
-
180
- if not self.output_cols:
181
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
182
- self.set_output_cols(output_cols=cols)
183
-
184
184
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MinCovDet":
185
185
  """
186
186
  Input columns setter.
@@ -226,54 +226,48 @@ class MinCovDet(BaseTransformer):
226
226
  self
227
227
  """
228
228
  self._infer_input_output_cols(dataset)
229
- if isinstance(dataset, pd.DataFrame):
230
- assert self._sklearn_object is not None # keep mypy happy
231
- self._sklearn_object = self._handlers.fit_pandas(
232
- dataset,
233
- self._sklearn_object,
234
- self.input_cols,
235
- self.label_cols,
236
- self.sample_weight_col
237
- )
238
- elif isinstance(dataset, DataFrame):
239
- self._fit_snowpark(dataset)
240
- else:
241
- raise TypeError(
242
- f"Unexpected dataset type: {type(dataset)}."
243
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
244
- )
229
+ if isinstance(dataset, DataFrame):
230
+ session = dataset._session
231
+ assert session is not None # keep mypy happy
232
+ # Validate that key package version in user workspace are supported in snowflake conda channel
233
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
234
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
235
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
236
+
237
+ # Specify input columns so column pruning will be enforced
238
+ selected_cols = self._get_active_columns()
239
+ if len(selected_cols) > 0:
240
+ dataset = dataset.select(selected_cols)
241
+
242
+ self._snowpark_cols = dataset.select(self.input_cols).columns
243
+
244
+ # If we are already in a stored procedure, no need to kick off another one.
245
+ if SNOWML_SPROC_ENV in os.environ:
246
+ statement_params = telemetry.get_function_usage_statement_params(
247
+ project=_PROJECT,
248
+ subproject=_SUBPROJECT,
249
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MinCovDet.__class__.__name__),
250
+ api_calls=[Session.call],
251
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
252
+ )
253
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
254
+ pd_df.columns = dataset.columns
255
+ dataset = pd_df
256
+
257
+ model_trainer = ModelTrainerBuilder.build(
258
+ estimator=self._sklearn_object,
259
+ dataset=dataset,
260
+ input_cols=self.input_cols,
261
+ label_cols=self.label_cols,
262
+ sample_weight_col=self.sample_weight_col,
263
+ autogenerated=self._autogenerated,
264
+ subproject=_SUBPROJECT
265
+ )
266
+ self._sklearn_object = model_trainer.train()
245
267
  self._is_fitted = True
246
268
  self._get_model_signatures(dataset)
247
269
  return self
248
270
 
249
- def _fit_snowpark(self, dataset: DataFrame) -> None:
250
- session = dataset._session
251
- assert session is not None # keep mypy happy
252
- # Validate that key package version in user workspace are supported in snowflake conda channel
253
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
254
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
255
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
256
-
257
- # Specify input columns so column pruning will be enforced
258
- selected_cols = self._get_active_columns()
259
- if len(selected_cols) > 0:
260
- dataset = dataset.select(selected_cols)
261
-
262
- estimator = self._sklearn_object
263
- assert estimator is not None # Keep mypy happy
264
-
265
- self._snowpark_cols = dataset.select(self.input_cols).columns
266
-
267
- self._sklearn_object = self._handlers.fit_snowpark(
268
- dataset,
269
- session,
270
- estimator,
271
- ["snowflake-snowpark-python"] + self._get_dependencies(),
272
- self.input_cols,
273
- self.label_cols,
274
- self.sample_weight_col,
275
- )
276
-
277
271
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
278
272
  if self._drop_input_cols:
279
273
  return []
@@ -461,11 +455,6 @@ class MinCovDet(BaseTransformer):
461
455
  subproject=_SUBPROJECT,
462
456
  custom_tags=dict([("autogen", True)]),
463
457
  )
464
- @telemetry.add_stmt_params_to_df(
465
- project=_PROJECT,
466
- subproject=_SUBPROJECT,
467
- custom_tags=dict([("autogen", True)]),
468
- )
469
458
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
470
459
  """Method not supported for this class.
471
460
 
@@ -517,11 +506,6 @@ class MinCovDet(BaseTransformer):
517
506
  subproject=_SUBPROJECT,
518
507
  custom_tags=dict([("autogen", True)]),
519
508
  )
520
- @telemetry.add_stmt_params_to_df(
521
- project=_PROJECT,
522
- subproject=_SUBPROJECT,
523
- custom_tags=dict([("autogen", True)]),
524
- )
525
509
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
526
510
  """Method not supported for this class.
527
511
 
@@ -578,7 +562,8 @@ class MinCovDet(BaseTransformer):
578
562
  if False:
579
563
  self.fit(dataset)
580
564
  assert self._sklearn_object is not None
581
- return self._sklearn_object.labels_
565
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
566
+ return labels
582
567
  else:
583
568
  raise NotImplementedError
584
569
 
@@ -614,6 +599,7 @@ class MinCovDet(BaseTransformer):
614
599
  output_cols = []
615
600
 
616
601
  # Make sure column names are valid snowflake identifiers.
602
+ assert output_cols is not None # Make MyPy happy
617
603
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
618
604
 
619
605
  return rv
@@ -624,11 +610,6 @@ class MinCovDet(BaseTransformer):
624
610
  subproject=_SUBPROJECT,
625
611
  custom_tags=dict([("autogen", True)]),
626
612
  )
627
- @telemetry.add_stmt_params_to_df(
628
- project=_PROJECT,
629
- subproject=_SUBPROJECT,
630
- custom_tags=dict([("autogen", True)]),
631
- )
632
613
  def predict_proba(
633
614
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
634
615
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -669,11 +650,6 @@ class MinCovDet(BaseTransformer):
669
650
  subproject=_SUBPROJECT,
670
651
  custom_tags=dict([("autogen", True)]),
671
652
  )
672
- @telemetry.add_stmt_params_to_df(
673
- project=_PROJECT,
674
- subproject=_SUBPROJECT,
675
- custom_tags=dict([("autogen", True)]),
676
- )
677
653
  def predict_log_proba(
678
654
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
679
655
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -710,16 +686,6 @@ class MinCovDet(BaseTransformer):
710
686
  return output_df
711
687
 
712
688
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
713
- @telemetry.send_api_usage_telemetry(
714
- project=_PROJECT,
715
- subproject=_SUBPROJECT,
716
- custom_tags=dict([("autogen", True)]),
717
- )
718
- @telemetry.add_stmt_params_to_df(
719
- project=_PROJECT,
720
- subproject=_SUBPROJECT,
721
- custom_tags=dict([("autogen", True)]),
722
- )
723
689
  def decision_function(
724
690
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
725
691
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -820,11 +786,6 @@ class MinCovDet(BaseTransformer):
820
786
  subproject=_SUBPROJECT,
821
787
  custom_tags=dict([("autogen", True)]),
822
788
  )
823
- @telemetry.add_stmt_params_to_df(
824
- project=_PROJECT,
825
- subproject=_SUBPROJECT,
826
- custom_tags=dict([("autogen", True)]),
827
- )
828
789
  def kneighbors(
829
790
  self,
830
791
  dataset: Union[DataFrame, pd.DataFrame],
@@ -884,18 +845,28 @@ class MinCovDet(BaseTransformer):
884
845
  # For classifier, the type of predict is the same as the type of label
885
846
  if self._sklearn_object._estimator_type == 'classifier':
886
847
  # label columns is the desired type for output
887
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
848
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
888
849
  # rename the output columns
889
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
850
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
851
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
852
+ ([] if self._drop_input_cols else inputs)
853
+ + outputs)
854
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
855
+ # For outlier models, returns -1 for outliers and 1 for inliers.
856
+ # Clusterer returns int64 cluster labels.
857
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
858
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
890
859
  self._model_signature_dict["predict"] = ModelSignature(inputs,
891
860
  ([] if self._drop_input_cols else inputs)
892
861
  + outputs)
862
+
893
863
  # For regressor, the type of predict is float64
894
864
  elif self._sklearn_object._estimator_type == 'regressor':
895
865
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
896
866
  self._model_signature_dict["predict"] = ModelSignature(inputs,
897
867
  ([] if self._drop_input_cols else inputs)
898
868
  + outputs)
869
+
899
870
  for prob_func in PROB_FUNCTIONS:
900
871
  if hasattr(self, prob_func):
901
872
  output_cols_prefix: str = f"{prob_func}_"