snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KNNImputer(BaseTransformer):
57
58
  r"""Imputation for completing missing values using k-Nearest Neighbors
58
59
  For more details on this class, see [sklearn.impute.KNNImputer]
@@ -60,6 +61,49 @@ class KNNImputer(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  missing_values: int, float, str, np.nan or None, default=np.nan
64
108
  The placeholder for the missing values. All occurrences of
65
109
  `missing_values` will be imputed. For pandas' dataframes with
@@ -106,35 +150,6 @@ class KNNImputer(BaseTransformer):
106
150
  If True, features that consist exclusively of missing values when
107
151
  `fit` is called are returned in results when `transform` is called.
108
152
  The imputed value is always `0`.
109
-
110
- input_cols: Optional[Union[str, List[str]]]
111
- A string or list of strings representing column names that contain features.
112
- If this parameter is not specified, all columns in the input DataFrame except
113
- the columns specified by label_cols and sample_weight_col parameters are
114
- considered input columns.
115
-
116
- label_cols: Optional[Union[str, List[str]]]
117
- A string or list of strings representing column names that contain labels.
118
- This is a required param for estimators, as there is no way to infer these
119
- columns. If this parameter is not specified, then object is fitted without
120
- labels (like a transformer).
121
-
122
- output_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that will store the
124
- output of predict and transform operations. The length of output_cols must
125
- match the expected number of output columns from the specific estimator or
126
- transformer class used.
127
- If this parameter is not specified, output column names are derived by
128
- adding an OUTPUT_ prefix to the label column names. These inferred output
129
- column names work for estimator's predict() method, but output_cols must
130
- be set explicitly for transformers.
131
-
132
- sample_weight_col: Optional[str]
133
- A string representing the column name containing the sample weights.
134
- This argument is only required when working with weighted datasets.
135
-
136
- drop_input_cols: Optional[bool], default=False
137
- If set, the response of predict(), transform() methods will not contain input columns.
138
153
  """
139
154
 
140
155
  def __init__( # type: ignore[no-untyped-def]
@@ -150,6 +165,7 @@ class KNNImputer(BaseTransformer):
150
165
  input_cols: Optional[Union[str, Iterable[str]]] = None,
151
166
  output_cols: Optional[Union[str, Iterable[str]]] = None,
152
167
  label_cols: Optional[Union[str, Iterable[str]]] = None,
168
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
153
169
  drop_input_cols: Optional[bool] = False,
154
170
  sample_weight_col: Optional[str] = None,
155
171
  ) -> None:
@@ -158,9 +174,10 @@ class KNNImputer(BaseTransformer):
158
174
  self.set_input_cols(input_cols)
159
175
  self.set_output_cols(output_cols)
160
176
  self.set_label_cols(label_cols)
177
+ self.set_passthrough_cols(passthrough_cols)
161
178
  self.set_drop_input_cols(drop_input_cols)
162
179
  self.set_sample_weight_col(sample_weight_col)
163
- deps = set(SklearnWrapperProvider().dependencies)
180
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
164
181
 
165
182
  self._deps = list(deps)
166
183
 
@@ -175,13 +192,14 @@ class KNNImputer(BaseTransformer):
175
192
  args=init_args,
176
193
  klass=sklearn.impute.KNNImputer
177
194
  )
178
- self._sklearn_object = sklearn.impute.KNNImputer(
195
+ self._sklearn_object: Any = sklearn.impute.KNNImputer(
179
196
  **cleaned_up_init_args,
180
197
  )
181
198
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
182
199
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
183
200
  self._snowpark_cols: Optional[List[str]] = self.input_cols
184
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
201
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
202
+ self._autogenerated = True
185
203
 
186
204
  def _get_rand_id(self) -> str:
187
205
  """
@@ -192,24 +210,6 @@ class KNNImputer(BaseTransformer):
192
210
  """
193
211
  return str(uuid4()).replace("-", "_").upper()
194
212
 
195
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
196
- """
197
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
198
-
199
- Args:
200
- dataset: Input dataset.
201
- """
202
- if not self.input_cols:
203
- cols = [
204
- c for c in dataset.columns
205
- if c not in self.get_label_cols() and c != self.sample_weight_col
206
- ]
207
- self.set_input_cols(input_cols=cols)
208
-
209
- if not self.output_cols:
210
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
211
- self.set_output_cols(output_cols=cols)
212
-
213
213
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KNNImputer":
214
214
  """
215
215
  Input columns setter.
@@ -255,54 +255,48 @@ class KNNImputer(BaseTransformer):
255
255
  self
256
256
  """
257
257
  self._infer_input_output_cols(dataset)
258
- if isinstance(dataset, pd.DataFrame):
259
- assert self._sklearn_object is not None # keep mypy happy
260
- self._sklearn_object = self._handlers.fit_pandas(
261
- dataset,
262
- self._sklearn_object,
263
- self.input_cols,
264
- self.label_cols,
265
- self.sample_weight_col
266
- )
267
- elif isinstance(dataset, DataFrame):
268
- self._fit_snowpark(dataset)
269
- else:
270
- raise TypeError(
271
- f"Unexpected dataset type: {type(dataset)}."
272
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
273
- )
258
+ if isinstance(dataset, DataFrame):
259
+ session = dataset._session
260
+ assert session is not None # keep mypy happy
261
+ # Validate that key package version in user workspace are supported in snowflake conda channel
262
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
263
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
264
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
265
+
266
+ # Specify input columns so column pruning will be enforced
267
+ selected_cols = self._get_active_columns()
268
+ if len(selected_cols) > 0:
269
+ dataset = dataset.select(selected_cols)
270
+
271
+ self._snowpark_cols = dataset.select(self.input_cols).columns
272
+
273
+ # If we are already in a stored procedure, no need to kick off another one.
274
+ if SNOWML_SPROC_ENV in os.environ:
275
+ statement_params = telemetry.get_function_usage_statement_params(
276
+ project=_PROJECT,
277
+ subproject=_SUBPROJECT,
278
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNNImputer.__class__.__name__),
279
+ api_calls=[Session.call],
280
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
281
+ )
282
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
283
+ pd_df.columns = dataset.columns
284
+ dataset = pd_df
285
+
286
+ model_trainer = ModelTrainerBuilder.build(
287
+ estimator=self._sklearn_object,
288
+ dataset=dataset,
289
+ input_cols=self.input_cols,
290
+ label_cols=self.label_cols,
291
+ sample_weight_col=self.sample_weight_col,
292
+ autogenerated=self._autogenerated,
293
+ subproject=_SUBPROJECT
294
+ )
295
+ self._sklearn_object = model_trainer.train()
274
296
  self._is_fitted = True
275
297
  self._get_model_signatures(dataset)
276
298
  return self
277
299
 
278
- def _fit_snowpark(self, dataset: DataFrame) -> None:
279
- session = dataset._session
280
- assert session is not None # keep mypy happy
281
- # Validate that key package version in user workspace are supported in snowflake conda channel
282
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
283
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
284
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
285
-
286
- # Specify input columns so column pruning will be enforced
287
- selected_cols = self._get_active_columns()
288
- if len(selected_cols) > 0:
289
- dataset = dataset.select(selected_cols)
290
-
291
- estimator = self._sklearn_object
292
- assert estimator is not None # Keep mypy happy
293
-
294
- self._snowpark_cols = dataset.select(self.input_cols).columns
295
-
296
- self._sklearn_object = self._handlers.fit_snowpark(
297
- dataset,
298
- session,
299
- estimator,
300
- ["snowflake-snowpark-python"] + self._get_dependencies(),
301
- self.input_cols,
302
- self.label_cols,
303
- self.sample_weight_col,
304
- )
305
-
306
300
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
307
301
  if self._drop_input_cols:
308
302
  return []
@@ -490,11 +484,6 @@ class KNNImputer(BaseTransformer):
490
484
  subproject=_SUBPROJECT,
491
485
  custom_tags=dict([("autogen", True)]),
492
486
  )
493
- @telemetry.add_stmt_params_to_df(
494
- project=_PROJECT,
495
- subproject=_SUBPROJECT,
496
- custom_tags=dict([("autogen", True)]),
497
- )
498
487
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
499
488
  """Method not supported for this class.
500
489
 
@@ -546,11 +535,6 @@ class KNNImputer(BaseTransformer):
546
535
  subproject=_SUBPROJECT,
547
536
  custom_tags=dict([("autogen", True)]),
548
537
  )
549
- @telemetry.add_stmt_params_to_df(
550
- project=_PROJECT,
551
- subproject=_SUBPROJECT,
552
- custom_tags=dict([("autogen", True)]),
553
- )
554
538
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
555
539
  """Impute all missing values in X
556
540
  For more details on this function, see [sklearn.impute.KNNImputer.transform]
@@ -609,7 +593,8 @@ class KNNImputer(BaseTransformer):
609
593
  if False:
610
594
  self.fit(dataset)
611
595
  assert self._sklearn_object is not None
612
- return self._sklearn_object.labels_
596
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
597
+ return labels
613
598
  else:
614
599
  raise NotImplementedError
615
600
 
@@ -645,6 +630,7 @@ class KNNImputer(BaseTransformer):
645
630
  output_cols = []
646
631
 
647
632
  # Make sure column names are valid snowflake identifiers.
633
+ assert output_cols is not None # Make MyPy happy
648
634
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
649
635
 
650
636
  return rv
@@ -655,11 +641,6 @@ class KNNImputer(BaseTransformer):
655
641
  subproject=_SUBPROJECT,
656
642
  custom_tags=dict([("autogen", True)]),
657
643
  )
658
- @telemetry.add_stmt_params_to_df(
659
- project=_PROJECT,
660
- subproject=_SUBPROJECT,
661
- custom_tags=dict([("autogen", True)]),
662
- )
663
644
  def predict_proba(
664
645
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
665
646
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -700,11 +681,6 @@ class KNNImputer(BaseTransformer):
700
681
  subproject=_SUBPROJECT,
701
682
  custom_tags=dict([("autogen", True)]),
702
683
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
684
  def predict_log_proba(
709
685
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
710
686
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,16 +717,6 @@ class KNNImputer(BaseTransformer):
741
717
  return output_df
742
718
 
743
719
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
744
- @telemetry.send_api_usage_telemetry(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
- @telemetry.add_stmt_params_to_df(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
720
  def decision_function(
755
721
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
756
722
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -849,11 +815,6 @@ class KNNImputer(BaseTransformer):
849
815
  subproject=_SUBPROJECT,
850
816
  custom_tags=dict([("autogen", True)]),
851
817
  )
852
- @telemetry.add_stmt_params_to_df(
853
- project=_PROJECT,
854
- subproject=_SUBPROJECT,
855
- custom_tags=dict([("autogen", True)]),
856
- )
857
818
  def kneighbors(
858
819
  self,
859
820
  dataset: Union[DataFrame, pd.DataFrame],
@@ -913,18 +874,28 @@ class KNNImputer(BaseTransformer):
913
874
  # For classifier, the type of predict is the same as the type of label
914
875
  if self._sklearn_object._estimator_type == 'classifier':
915
876
  # label columns is the desired type for output
916
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
877
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
917
878
  # rename the output columns
918
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
879
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
880
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
881
+ ([] if self._drop_input_cols else inputs)
882
+ + outputs)
883
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
884
+ # For outlier models, returns -1 for outliers and 1 for inliers.
885
+ # Clusterer returns int64 cluster labels.
886
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
887
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
919
888
  self._model_signature_dict["predict"] = ModelSignature(inputs,
920
889
  ([] if self._drop_input_cols else inputs)
921
890
  + outputs)
891
+
922
892
  # For regressor, the type of predict is float64
923
893
  elif self._sklearn_object._estimator_type == 'regressor':
924
894
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
925
895
  self._model_signature_dict["predict"] = ModelSignature(inputs,
926
896
  ([] if self._drop_input_cols else inputs)
927
897
  + outputs)
898
+
928
899
  for prob_func in PROB_FUNCTIONS:
929
900
  if hasattr(self, prob_func):
930
901
  output_cols_prefix: str = f"{prob_func}_"