snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ComplementNB(BaseTransformer):
57
58
  r"""The Complement Naive Bayes classifier described in Rennie et al
58
59
  For more details on this class, see [sklearn.naive_bayes.ComplementNB]
@@ -60,6 +61,51 @@ class ComplementNB(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float or array-like of shape (n_features,), default=1.0
64
110
  Additive (Laplace/Lidstone) smoothing parameter
65
111
  (set alpha=0 and force_alpha=True, for no smoothing).
@@ -80,35 +126,6 @@ class ComplementNB(BaseTransformer):
80
126
  default behavior mirrors the implementations found in Mahout and Weka,
81
127
  which do not follow the full algorithm described in Table 9 of the
82
128
  paper.
83
-
84
- input_cols: Optional[Union[str, List[str]]]
85
- A string or list of strings representing column names that contain features.
86
- If this parameter is not specified, all columns in the input DataFrame except
87
- the columns specified by label_cols and sample_weight_col parameters are
88
- considered input columns.
89
-
90
- label_cols: Optional[Union[str, List[str]]]
91
- A string or list of strings representing column names that contain labels.
92
- This is a required param for estimators, as there is no way to infer these
93
- columns. If this parameter is not specified, then object is fitted without
94
- labels (like a transformer).
95
-
96
- output_cols: Optional[Union[str, List[str]]]
97
- A string or list of strings representing column names that will store the
98
- output of predict and transform operations. The length of output_cols must
99
- match the expected number of output columns from the specific estimator or
100
- transformer class used.
101
- If this parameter is not specified, output column names are derived by
102
- adding an OUTPUT_ prefix to the label column names. These inferred output
103
- column names work for estimator's predict() method, but output_cols must
104
- be set explicitly for transformers.
105
-
106
- sample_weight_col: Optional[str]
107
- A string representing the column name containing the sample weights.
108
- This argument is only required when working with weighted datasets.
109
-
110
- drop_input_cols: Optional[bool], default=False
111
- If set, the response of predict(), transform() methods will not contain input columns.
112
129
  """
113
130
 
114
131
  def __init__( # type: ignore[no-untyped-def]
@@ -122,6 +139,7 @@ class ComplementNB(BaseTransformer):
122
139
  input_cols: Optional[Union[str, Iterable[str]]] = None,
123
140
  output_cols: Optional[Union[str, Iterable[str]]] = None,
124
141
  label_cols: Optional[Union[str, Iterable[str]]] = None,
142
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
125
143
  drop_input_cols: Optional[bool] = False,
126
144
  sample_weight_col: Optional[str] = None,
127
145
  ) -> None:
@@ -130,9 +148,10 @@ class ComplementNB(BaseTransformer):
130
148
  self.set_input_cols(input_cols)
131
149
  self.set_output_cols(output_cols)
132
150
  self.set_label_cols(label_cols)
151
+ self.set_passthrough_cols(passthrough_cols)
133
152
  self.set_drop_input_cols(drop_input_cols)
134
153
  self.set_sample_weight_col(sample_weight_col)
135
- deps = set(SklearnWrapperProvider().dependencies)
154
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
136
155
 
137
156
  self._deps = list(deps)
138
157
 
@@ -145,13 +164,14 @@ class ComplementNB(BaseTransformer):
145
164
  args=init_args,
146
165
  klass=sklearn.naive_bayes.ComplementNB
147
166
  )
148
- self._sklearn_object = sklearn.naive_bayes.ComplementNB(
167
+ self._sklearn_object: Any = sklearn.naive_bayes.ComplementNB(
149
168
  **cleaned_up_init_args,
150
169
  )
151
170
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
152
171
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
153
172
  self._snowpark_cols: Optional[List[str]] = self.input_cols
154
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ComplementNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
173
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ComplementNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
174
+ self._autogenerated = True
155
175
 
156
176
  def _get_rand_id(self) -> str:
157
177
  """
@@ -162,24 +182,6 @@ class ComplementNB(BaseTransformer):
162
182
  """
163
183
  return str(uuid4()).replace("-", "_").upper()
164
184
 
165
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
166
- """
167
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
168
-
169
- Args:
170
- dataset: Input dataset.
171
- """
172
- if not self.input_cols:
173
- cols = [
174
- c for c in dataset.columns
175
- if c not in self.get_label_cols() and c != self.sample_weight_col
176
- ]
177
- self.set_input_cols(input_cols=cols)
178
-
179
- if not self.output_cols:
180
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
181
- self.set_output_cols(output_cols=cols)
182
-
183
185
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ComplementNB":
184
186
  """
185
187
  Input columns setter.
@@ -225,54 +227,48 @@ class ComplementNB(BaseTransformer):
225
227
  self
226
228
  """
227
229
  self._infer_input_output_cols(dataset)
228
- if isinstance(dataset, pd.DataFrame):
229
- assert self._sklearn_object is not None # keep mypy happy
230
- self._sklearn_object = self._handlers.fit_pandas(
231
- dataset,
232
- self._sklearn_object,
233
- self.input_cols,
234
- self.label_cols,
235
- self.sample_weight_col
236
- )
237
- elif isinstance(dataset, DataFrame):
238
- self._fit_snowpark(dataset)
239
- else:
240
- raise TypeError(
241
- f"Unexpected dataset type: {type(dataset)}."
242
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
243
- )
230
+ if isinstance(dataset, DataFrame):
231
+ session = dataset._session
232
+ assert session is not None # keep mypy happy
233
+ # Validate that key package version in user workspace are supported in snowflake conda channel
234
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
235
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
236
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
237
+
238
+ # Specify input columns so column pruning will be enforced
239
+ selected_cols = self._get_active_columns()
240
+ if len(selected_cols) > 0:
241
+ dataset = dataset.select(selected_cols)
242
+
243
+ self._snowpark_cols = dataset.select(self.input_cols).columns
244
+
245
+ # If we are already in a stored procedure, no need to kick off another one.
246
+ if SNOWML_SPROC_ENV in os.environ:
247
+ statement_params = telemetry.get_function_usage_statement_params(
248
+ project=_PROJECT,
249
+ subproject=_SUBPROJECT,
250
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ComplementNB.__class__.__name__),
251
+ api_calls=[Session.call],
252
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
+ )
254
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
255
+ pd_df.columns = dataset.columns
256
+ dataset = pd_df
257
+
258
+ model_trainer = ModelTrainerBuilder.build(
259
+ estimator=self._sklearn_object,
260
+ dataset=dataset,
261
+ input_cols=self.input_cols,
262
+ label_cols=self.label_cols,
263
+ sample_weight_col=self.sample_weight_col,
264
+ autogenerated=self._autogenerated,
265
+ subproject=_SUBPROJECT
266
+ )
267
+ self._sklearn_object = model_trainer.train()
244
268
  self._is_fitted = True
245
269
  self._get_model_signatures(dataset)
246
270
  return self
247
271
 
248
- def _fit_snowpark(self, dataset: DataFrame) -> None:
249
- session = dataset._session
250
- assert session is not None # keep mypy happy
251
- # Validate that key package version in user workspace are supported in snowflake conda channel
252
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
253
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
254
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
255
-
256
- # Specify input columns so column pruning will be enforced
257
- selected_cols = self._get_active_columns()
258
- if len(selected_cols) > 0:
259
- dataset = dataset.select(selected_cols)
260
-
261
- estimator = self._sklearn_object
262
- assert estimator is not None # Keep mypy happy
263
-
264
- self._snowpark_cols = dataset.select(self.input_cols).columns
265
-
266
- self._sklearn_object = self._handlers.fit_snowpark(
267
- dataset,
268
- session,
269
- estimator,
270
- ["snowflake-snowpark-python"] + self._get_dependencies(),
271
- self.input_cols,
272
- self.label_cols,
273
- self.sample_weight_col,
274
- )
275
-
276
272
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
277
273
  if self._drop_input_cols:
278
274
  return []
@@ -460,11 +456,6 @@ class ComplementNB(BaseTransformer):
460
456
  subproject=_SUBPROJECT,
461
457
  custom_tags=dict([("autogen", True)]),
462
458
  )
463
- @telemetry.add_stmt_params_to_df(
464
- project=_PROJECT,
465
- subproject=_SUBPROJECT,
466
- custom_tags=dict([("autogen", True)]),
467
- )
468
459
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
469
460
  """Perform classification on an array of test vectors X
470
461
  For more details on this function, see [sklearn.naive_bayes.ComplementNB.predict]
@@ -518,11 +509,6 @@ class ComplementNB(BaseTransformer):
518
509
  subproject=_SUBPROJECT,
519
510
  custom_tags=dict([("autogen", True)]),
520
511
  )
521
- @telemetry.add_stmt_params_to_df(
522
- project=_PROJECT,
523
- subproject=_SUBPROJECT,
524
- custom_tags=dict([("autogen", True)]),
525
- )
526
512
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
527
513
  """Method not supported for this class.
528
514
 
@@ -579,7 +565,8 @@ class ComplementNB(BaseTransformer):
579
565
  if False:
580
566
  self.fit(dataset)
581
567
  assert self._sklearn_object is not None
582
- return self._sklearn_object.labels_
568
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
569
+ return labels
583
570
  else:
584
571
  raise NotImplementedError
585
572
 
@@ -615,6 +602,7 @@ class ComplementNB(BaseTransformer):
615
602
  output_cols = []
616
603
 
617
604
  # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
618
606
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
619
607
 
620
608
  return rv
@@ -625,11 +613,6 @@ class ComplementNB(BaseTransformer):
625
613
  subproject=_SUBPROJECT,
626
614
  custom_tags=dict([("autogen", True)]),
627
615
  )
628
- @telemetry.add_stmt_params_to_df(
629
- project=_PROJECT,
630
- subproject=_SUBPROJECT,
631
- custom_tags=dict([("autogen", True)]),
632
- )
633
616
  def predict_proba(
634
617
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
635
618
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -672,11 +655,6 @@ class ComplementNB(BaseTransformer):
672
655
  subproject=_SUBPROJECT,
673
656
  custom_tags=dict([("autogen", True)]),
674
657
  )
675
- @telemetry.add_stmt_params_to_df(
676
- project=_PROJECT,
677
- subproject=_SUBPROJECT,
678
- custom_tags=dict([("autogen", True)]),
679
- )
680
658
  def predict_log_proba(
681
659
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
682
660
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -715,16 +693,6 @@ class ComplementNB(BaseTransformer):
715
693
  return output_df
716
694
 
717
695
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
718
- @telemetry.send_api_usage_telemetry(
719
- project=_PROJECT,
720
- subproject=_SUBPROJECT,
721
- custom_tags=dict([("autogen", True)]),
722
- )
723
- @telemetry.add_stmt_params_to_df(
724
- project=_PROJECT,
725
- subproject=_SUBPROJECT,
726
- custom_tags=dict([("autogen", True)]),
727
- )
728
696
  def decision_function(
729
697
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
730
698
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -825,11 +793,6 @@ class ComplementNB(BaseTransformer):
825
793
  subproject=_SUBPROJECT,
826
794
  custom_tags=dict([("autogen", True)]),
827
795
  )
828
- @telemetry.add_stmt_params_to_df(
829
- project=_PROJECT,
830
- subproject=_SUBPROJECT,
831
- custom_tags=dict([("autogen", True)]),
832
- )
833
796
  def kneighbors(
834
797
  self,
835
798
  dataset: Union[DataFrame, pd.DataFrame],
@@ -889,18 +852,28 @@ class ComplementNB(BaseTransformer):
889
852
  # For classifier, the type of predict is the same as the type of label
890
853
  if self._sklearn_object._estimator_type == 'classifier':
891
854
  # label columns is the desired type for output
892
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
855
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
893
856
  # rename the output columns
894
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
857
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
895
858
  self._model_signature_dict["predict"] = ModelSignature(inputs,
896
859
  ([] if self._drop_input_cols else inputs)
897
860
  + outputs)
861
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
862
+ # For outlier models, returns -1 for outliers and 1 for inliers.
863
+ # Clusterer returns int64 cluster labels.
864
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
865
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
866
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
867
+ ([] if self._drop_input_cols else inputs)
868
+ + outputs)
869
+
898
870
  # For regressor, the type of predict is float64
899
871
  elif self._sklearn_object._estimator_type == 'regressor':
900
872
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
901
873
  self._model_signature_dict["predict"] = ModelSignature(inputs,
902
874
  ([] if self._drop_input_cols else inputs)
903
875
  + outputs)
876
+
904
877
  for prob_func in PROB_FUNCTIONS:
905
878
  if hasattr(self, prob_func):
906
879
  output_cols_prefix: str = f"{prob_func}_"