snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class BaggingRegressor(BaseTransformer):
57
58
  r"""A Bagging regressor
58
59
  For more details on this class, see [sklearn.ensemble.BaggingRegressor]
@@ -60,6 +61,51 @@ class BaggingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: object, default=None
64
110
  The base estimator to fit on random subsets of the dataset.
65
111
  If None, then the base estimator is a
@@ -118,35 +164,6 @@ class BaggingRegressor(BaseTransformer):
118
164
 
119
165
  base_estimator: object, default="deprecated"
120
166
  Use `estimator` instead.
121
-
122
- input_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that contain features.
124
- If this parameter is not specified, all columns in the input DataFrame except
125
- the columns specified by label_cols and sample_weight_col parameters are
126
- considered input columns.
127
-
128
- label_cols: Optional[Union[str, List[str]]]
129
- A string or list of strings representing column names that contain labels.
130
- This is a required param for estimators, as there is no way to infer these
131
- columns. If this parameter is not specified, then object is fitted without
132
- labels (like a transformer).
133
-
134
- output_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that will store the
136
- output of predict and transform operations. The length of output_cols must
137
- match the expected number of output columns from the specific estimator or
138
- transformer class used.
139
- If this parameter is not specified, output column names are derived by
140
- adding an OUTPUT_ prefix to the label column names. These inferred output
141
- column names work for estimator's predict() method, but output_cols must
142
- be set explicitly for transformers.
143
-
144
- sample_weight_col: Optional[str]
145
- A string representing the column name containing the sample weights.
146
- This argument is only required when working with weighted datasets.
147
-
148
- drop_input_cols: Optional[bool], default=False
149
- If set, the response of predict(), transform() methods will not contain input columns.
150
167
  """
151
168
 
152
169
  def __init__( # type: ignore[no-untyped-def]
@@ -167,6 +184,7 @@ class BaggingRegressor(BaseTransformer):
167
184
  input_cols: Optional[Union[str, Iterable[str]]] = None,
168
185
  output_cols: Optional[Union[str, Iterable[str]]] = None,
169
186
  label_cols: Optional[Union[str, Iterable[str]]] = None,
187
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
170
188
  drop_input_cols: Optional[bool] = False,
171
189
  sample_weight_col: Optional[str] = None,
172
190
  ) -> None:
@@ -175,9 +193,10 @@ class BaggingRegressor(BaseTransformer):
175
193
  self.set_input_cols(input_cols)
176
194
  self.set_output_cols(output_cols)
177
195
  self.set_label_cols(label_cols)
196
+ self.set_passthrough_cols(passthrough_cols)
178
197
  self.set_drop_input_cols(drop_input_cols)
179
198
  self.set_sample_weight_col(sample_weight_col)
180
- deps = set(SklearnWrapperProvider().dependencies)
199
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
181
200
  deps = deps | gather_dependencies(estimator)
182
201
  deps = deps | gather_dependencies(base_estimator)
183
202
  self._deps = list(deps)
@@ -199,13 +218,14 @@ class BaggingRegressor(BaseTransformer):
199
218
  args=init_args,
200
219
  klass=sklearn.ensemble.BaggingRegressor
201
220
  )
202
- self._sklearn_object = sklearn.ensemble.BaggingRegressor(
221
+ self._sklearn_object: Any = sklearn.ensemble.BaggingRegressor(
203
222
  **cleaned_up_init_args,
204
223
  )
205
224
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
206
225
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
207
226
  self._snowpark_cols: Optional[List[str]] = self.input_cols
208
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
227
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._autogenerated = True
209
229
 
210
230
  def _get_rand_id(self) -> str:
211
231
  """
@@ -216,24 +236,6 @@ class BaggingRegressor(BaseTransformer):
216
236
  """
217
237
  return str(uuid4()).replace("-", "_").upper()
218
238
 
219
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
220
- """
221
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
222
-
223
- Args:
224
- dataset: Input dataset.
225
- """
226
- if not self.input_cols:
227
- cols = [
228
- c for c in dataset.columns
229
- if c not in self.get_label_cols() and c != self.sample_weight_col
230
- ]
231
- self.set_input_cols(input_cols=cols)
232
-
233
- if not self.output_cols:
234
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
235
- self.set_output_cols(output_cols=cols)
236
-
237
239
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "BaggingRegressor":
238
240
  """
239
241
  Input columns setter.
@@ -279,54 +281,48 @@ class BaggingRegressor(BaseTransformer):
279
281
  self
280
282
  """
281
283
  self._infer_input_output_cols(dataset)
282
- if isinstance(dataset, pd.DataFrame):
283
- assert self._sklearn_object is not None # keep mypy happy
284
- self._sklearn_object = self._handlers.fit_pandas(
285
- dataset,
286
- self._sklearn_object,
287
- self.input_cols,
288
- self.label_cols,
289
- self.sample_weight_col
290
- )
291
- elif isinstance(dataset, DataFrame):
292
- self._fit_snowpark(dataset)
293
- else:
294
- raise TypeError(
295
- f"Unexpected dataset type: {type(dataset)}."
296
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
297
- )
284
+ if isinstance(dataset, DataFrame):
285
+ session = dataset._session
286
+ assert session is not None # keep mypy happy
287
+ # Validate that key package version in user workspace are supported in snowflake conda channel
288
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
289
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
290
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
291
+
292
+ # Specify input columns so column pruning will be enforced
293
+ selected_cols = self._get_active_columns()
294
+ if len(selected_cols) > 0:
295
+ dataset = dataset.select(selected_cols)
296
+
297
+ self._snowpark_cols = dataset.select(self.input_cols).columns
298
+
299
+ # If we are already in a stored procedure, no need to kick off another one.
300
+ if SNOWML_SPROC_ENV in os.environ:
301
+ statement_params = telemetry.get_function_usage_statement_params(
302
+ project=_PROJECT,
303
+ subproject=_SUBPROJECT,
304
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
305
+ api_calls=[Session.call],
306
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
307
+ )
308
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
309
+ pd_df.columns = dataset.columns
310
+ dataset = pd_df
311
+
312
+ model_trainer = ModelTrainerBuilder.build(
313
+ estimator=self._sklearn_object,
314
+ dataset=dataset,
315
+ input_cols=self.input_cols,
316
+ label_cols=self.label_cols,
317
+ sample_weight_col=self.sample_weight_col,
318
+ autogenerated=self._autogenerated,
319
+ subproject=_SUBPROJECT
320
+ )
321
+ self._sklearn_object = model_trainer.train()
298
322
  self._is_fitted = True
299
323
  self._get_model_signatures(dataset)
300
324
  return self
301
325
 
302
- def _fit_snowpark(self, dataset: DataFrame) -> None:
303
- session = dataset._session
304
- assert session is not None # keep mypy happy
305
- # Validate that key package version in user workspace are supported in snowflake conda channel
306
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
307
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
308
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
309
-
310
- # Specify input columns so column pruning will be enforced
311
- selected_cols = self._get_active_columns()
312
- if len(selected_cols) > 0:
313
- dataset = dataset.select(selected_cols)
314
-
315
- estimator = self._sklearn_object
316
- assert estimator is not None # Keep mypy happy
317
-
318
- self._snowpark_cols = dataset.select(self.input_cols).columns
319
-
320
- self._sklearn_object = self._handlers.fit_snowpark(
321
- dataset,
322
- session,
323
- estimator,
324
- ["snowflake-snowpark-python"] + self._get_dependencies(),
325
- self.input_cols,
326
- self.label_cols,
327
- self.sample_weight_col,
328
- )
329
-
330
326
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
331
327
  if self._drop_input_cols:
332
328
  return []
@@ -514,11 +510,6 @@ class BaggingRegressor(BaseTransformer):
514
510
  subproject=_SUBPROJECT,
515
511
  custom_tags=dict([("autogen", True)]),
516
512
  )
517
- @telemetry.add_stmt_params_to_df(
518
- project=_PROJECT,
519
- subproject=_SUBPROJECT,
520
- custom_tags=dict([("autogen", True)]),
521
- )
522
513
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
523
514
  """Predict regression target for X
524
515
  For more details on this function, see [sklearn.ensemble.BaggingRegressor.predict]
@@ -572,11 +563,6 @@ class BaggingRegressor(BaseTransformer):
572
563
  subproject=_SUBPROJECT,
573
564
  custom_tags=dict([("autogen", True)]),
574
565
  )
575
- @telemetry.add_stmt_params_to_df(
576
- project=_PROJECT,
577
- subproject=_SUBPROJECT,
578
- custom_tags=dict([("autogen", True)]),
579
- )
580
566
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
581
567
  """Method not supported for this class.
582
568
 
@@ -633,7 +619,8 @@ class BaggingRegressor(BaseTransformer):
633
619
  if False:
634
620
  self.fit(dataset)
635
621
  assert self._sklearn_object is not None
636
- return self._sklearn_object.labels_
622
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
623
+ return labels
637
624
  else:
638
625
  raise NotImplementedError
639
626
 
@@ -669,6 +656,7 @@ class BaggingRegressor(BaseTransformer):
669
656
  output_cols = []
670
657
 
671
658
  # Make sure column names are valid snowflake identifiers.
659
+ assert output_cols is not None # Make MyPy happy
672
660
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
673
661
 
674
662
  return rv
@@ -679,11 +667,6 @@ class BaggingRegressor(BaseTransformer):
679
667
  subproject=_SUBPROJECT,
680
668
  custom_tags=dict([("autogen", True)]),
681
669
  )
682
- @telemetry.add_stmt_params_to_df(
683
- project=_PROJECT,
684
- subproject=_SUBPROJECT,
685
- custom_tags=dict([("autogen", True)]),
686
- )
687
670
  def predict_proba(
688
671
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
689
672
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -724,11 +707,6 @@ class BaggingRegressor(BaseTransformer):
724
707
  subproject=_SUBPROJECT,
725
708
  custom_tags=dict([("autogen", True)]),
726
709
  )
727
- @telemetry.add_stmt_params_to_df(
728
- project=_PROJECT,
729
- subproject=_SUBPROJECT,
730
- custom_tags=dict([("autogen", True)]),
731
- )
732
710
  def predict_log_proba(
733
711
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
734
712
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -765,16 +743,6 @@ class BaggingRegressor(BaseTransformer):
765
743
  return output_df
766
744
 
767
745
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
768
- @telemetry.send_api_usage_telemetry(
769
- project=_PROJECT,
770
- subproject=_SUBPROJECT,
771
- custom_tags=dict([("autogen", True)]),
772
- )
773
- @telemetry.add_stmt_params_to_df(
774
- project=_PROJECT,
775
- subproject=_SUBPROJECT,
776
- custom_tags=dict([("autogen", True)]),
777
- )
778
746
  def decision_function(
779
747
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
780
748
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -875,11 +843,6 @@ class BaggingRegressor(BaseTransformer):
875
843
  subproject=_SUBPROJECT,
876
844
  custom_tags=dict([("autogen", True)]),
877
845
  )
878
- @telemetry.add_stmt_params_to_df(
879
- project=_PROJECT,
880
- subproject=_SUBPROJECT,
881
- custom_tags=dict([("autogen", True)]),
882
- )
883
846
  def kneighbors(
884
847
  self,
885
848
  dataset: Union[DataFrame, pd.DataFrame],
@@ -939,18 +902,28 @@ class BaggingRegressor(BaseTransformer):
939
902
  # For classifier, the type of predict is the same as the type of label
940
903
  if self._sklearn_object._estimator_type == 'classifier':
941
904
  # label columns is the desired type for output
942
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
905
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
943
906
  # rename the output columns
944
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
907
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
945
908
  self._model_signature_dict["predict"] = ModelSignature(inputs,
946
909
  ([] if self._drop_input_cols else inputs)
947
910
  + outputs)
911
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
912
+ # For outlier models, returns -1 for outliers and 1 for inliers.
913
+ # Clusterer returns int64 cluster labels.
914
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
915
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
916
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
917
+ ([] if self._drop_input_cols else inputs)
918
+ + outputs)
919
+
948
920
  # For regressor, the type of predict is float64
949
921
  elif self._sklearn_object._estimator_type == 'regressor':
950
922
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
951
923
  self._model_signature_dict["predict"] = ModelSignature(inputs,
952
924
  ([] if self._drop_input_cols else inputs)
953
925
  + outputs)
926
+
954
927
  for prob_func in PROB_FUNCTIONS:
955
928
  if hasattr(self, prob_func):
956
929
  output_cols_prefix: str = f"{prob_func}_"