snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class BaggingRegressor(BaseTransformer):
|
57
58
|
r"""A Bagging regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.BaggingRegressor]
|
@@ -60,6 +61,51 @@ class BaggingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
The base estimator to fit on random subsets of the dataset.
|
65
111
|
If None, then the base estimator is a
|
@@ -118,35 +164,6 @@ class BaggingRegressor(BaseTransformer):
|
|
118
164
|
|
119
165
|
base_estimator: object, default="deprecated"
|
120
166
|
Use `estimator` instead.
|
121
|
-
|
122
|
-
input_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that contain features.
|
124
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
125
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
126
|
-
considered input columns.
|
127
|
-
|
128
|
-
label_cols: Optional[Union[str, List[str]]]
|
129
|
-
A string or list of strings representing column names that contain labels.
|
130
|
-
This is a required param for estimators, as there is no way to infer these
|
131
|
-
columns. If this parameter is not specified, then object is fitted without
|
132
|
-
labels (like a transformer).
|
133
|
-
|
134
|
-
output_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that will store the
|
136
|
-
output of predict and transform operations. The length of output_cols must
|
137
|
-
match the expected number of output columns from the specific estimator or
|
138
|
-
transformer class used.
|
139
|
-
If this parameter is not specified, output column names are derived by
|
140
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
141
|
-
column names work for estimator's predict() method, but output_cols must
|
142
|
-
be set explicitly for transformers.
|
143
|
-
|
144
|
-
sample_weight_col: Optional[str]
|
145
|
-
A string representing the column name containing the sample weights.
|
146
|
-
This argument is only required when working with weighted datasets.
|
147
|
-
|
148
|
-
drop_input_cols: Optional[bool], default=False
|
149
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
150
167
|
"""
|
151
168
|
|
152
169
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -167,6 +184,7 @@ class BaggingRegressor(BaseTransformer):
|
|
167
184
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
168
185
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
169
186
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
187
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
170
188
|
drop_input_cols: Optional[bool] = False,
|
171
189
|
sample_weight_col: Optional[str] = None,
|
172
190
|
) -> None:
|
@@ -175,9 +193,10 @@ class BaggingRegressor(BaseTransformer):
|
|
175
193
|
self.set_input_cols(input_cols)
|
176
194
|
self.set_output_cols(output_cols)
|
177
195
|
self.set_label_cols(label_cols)
|
196
|
+
self.set_passthrough_cols(passthrough_cols)
|
178
197
|
self.set_drop_input_cols(drop_input_cols)
|
179
198
|
self.set_sample_weight_col(sample_weight_col)
|
180
|
-
deps = set(
|
199
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
181
200
|
deps = deps | gather_dependencies(estimator)
|
182
201
|
deps = deps | gather_dependencies(base_estimator)
|
183
202
|
self._deps = list(deps)
|
@@ -199,13 +218,14 @@ class BaggingRegressor(BaseTransformer):
|
|
199
218
|
args=init_args,
|
200
219
|
klass=sklearn.ensemble.BaggingRegressor
|
201
220
|
)
|
202
|
-
self._sklearn_object = sklearn.ensemble.BaggingRegressor(
|
221
|
+
self._sklearn_object: Any = sklearn.ensemble.BaggingRegressor(
|
203
222
|
**cleaned_up_init_args,
|
204
223
|
)
|
205
224
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
206
225
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
207
226
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
208
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
227
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
228
|
+
self._autogenerated = True
|
209
229
|
|
210
230
|
def _get_rand_id(self) -> str:
|
211
231
|
"""
|
@@ -216,24 +236,6 @@ class BaggingRegressor(BaseTransformer):
|
|
216
236
|
"""
|
217
237
|
return str(uuid4()).replace("-", "_").upper()
|
218
238
|
|
219
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
220
|
-
"""
|
221
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
222
|
-
|
223
|
-
Args:
|
224
|
-
dataset: Input dataset.
|
225
|
-
"""
|
226
|
-
if not self.input_cols:
|
227
|
-
cols = [
|
228
|
-
c for c in dataset.columns
|
229
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
230
|
-
]
|
231
|
-
self.set_input_cols(input_cols=cols)
|
232
|
-
|
233
|
-
if not self.output_cols:
|
234
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
235
|
-
self.set_output_cols(output_cols=cols)
|
236
|
-
|
237
239
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "BaggingRegressor":
|
238
240
|
"""
|
239
241
|
Input columns setter.
|
@@ -279,54 +281,48 @@ class BaggingRegressor(BaseTransformer):
|
|
279
281
|
self
|
280
282
|
"""
|
281
283
|
self._infer_input_output_cols(dataset)
|
282
|
-
if isinstance(dataset,
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
self.
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
284
|
+
if isinstance(dataset, DataFrame):
|
285
|
+
session = dataset._session
|
286
|
+
assert session is not None # keep mypy happy
|
287
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
288
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
289
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
290
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
291
|
+
|
292
|
+
# Specify input columns so column pruning will be enforced
|
293
|
+
selected_cols = self._get_active_columns()
|
294
|
+
if len(selected_cols) > 0:
|
295
|
+
dataset = dataset.select(selected_cols)
|
296
|
+
|
297
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
298
|
+
|
299
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
300
|
+
if SNOWML_SPROC_ENV in os.environ:
|
301
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
302
|
+
project=_PROJECT,
|
303
|
+
subproject=_SUBPROJECT,
|
304
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
|
305
|
+
api_calls=[Session.call],
|
306
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
307
|
+
)
|
308
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
309
|
+
pd_df.columns = dataset.columns
|
310
|
+
dataset = pd_df
|
311
|
+
|
312
|
+
model_trainer = ModelTrainerBuilder.build(
|
313
|
+
estimator=self._sklearn_object,
|
314
|
+
dataset=dataset,
|
315
|
+
input_cols=self.input_cols,
|
316
|
+
label_cols=self.label_cols,
|
317
|
+
sample_weight_col=self.sample_weight_col,
|
318
|
+
autogenerated=self._autogenerated,
|
319
|
+
subproject=_SUBPROJECT
|
320
|
+
)
|
321
|
+
self._sklearn_object = model_trainer.train()
|
298
322
|
self._is_fitted = True
|
299
323
|
self._get_model_signatures(dataset)
|
300
324
|
return self
|
301
325
|
|
302
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
303
|
-
session = dataset._session
|
304
|
-
assert session is not None # keep mypy happy
|
305
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
306
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
307
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
308
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
309
|
-
|
310
|
-
# Specify input columns so column pruning will be enforced
|
311
|
-
selected_cols = self._get_active_columns()
|
312
|
-
if len(selected_cols) > 0:
|
313
|
-
dataset = dataset.select(selected_cols)
|
314
|
-
|
315
|
-
estimator = self._sklearn_object
|
316
|
-
assert estimator is not None # Keep mypy happy
|
317
|
-
|
318
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
319
|
-
|
320
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
321
|
-
dataset,
|
322
|
-
session,
|
323
|
-
estimator,
|
324
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
325
|
-
self.input_cols,
|
326
|
-
self.label_cols,
|
327
|
-
self.sample_weight_col,
|
328
|
-
)
|
329
|
-
|
330
326
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
331
327
|
if self._drop_input_cols:
|
332
328
|
return []
|
@@ -514,11 +510,6 @@ class BaggingRegressor(BaseTransformer):
|
|
514
510
|
subproject=_SUBPROJECT,
|
515
511
|
custom_tags=dict([("autogen", True)]),
|
516
512
|
)
|
517
|
-
@telemetry.add_stmt_params_to_df(
|
518
|
-
project=_PROJECT,
|
519
|
-
subproject=_SUBPROJECT,
|
520
|
-
custom_tags=dict([("autogen", True)]),
|
521
|
-
)
|
522
513
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
523
514
|
"""Predict regression target for X
|
524
515
|
For more details on this function, see [sklearn.ensemble.BaggingRegressor.predict]
|
@@ -572,11 +563,6 @@ class BaggingRegressor(BaseTransformer):
|
|
572
563
|
subproject=_SUBPROJECT,
|
573
564
|
custom_tags=dict([("autogen", True)]),
|
574
565
|
)
|
575
|
-
@telemetry.add_stmt_params_to_df(
|
576
|
-
project=_PROJECT,
|
577
|
-
subproject=_SUBPROJECT,
|
578
|
-
custom_tags=dict([("autogen", True)]),
|
579
|
-
)
|
580
566
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
581
567
|
"""Method not supported for this class.
|
582
568
|
|
@@ -633,7 +619,8 @@ class BaggingRegressor(BaseTransformer):
|
|
633
619
|
if False:
|
634
620
|
self.fit(dataset)
|
635
621
|
assert self._sklearn_object is not None
|
636
|
-
|
622
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
623
|
+
return labels
|
637
624
|
else:
|
638
625
|
raise NotImplementedError
|
639
626
|
|
@@ -669,6 +656,7 @@ class BaggingRegressor(BaseTransformer):
|
|
669
656
|
output_cols = []
|
670
657
|
|
671
658
|
# Make sure column names are valid snowflake identifiers.
|
659
|
+
assert output_cols is not None # Make MyPy happy
|
672
660
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
673
661
|
|
674
662
|
return rv
|
@@ -679,11 +667,6 @@ class BaggingRegressor(BaseTransformer):
|
|
679
667
|
subproject=_SUBPROJECT,
|
680
668
|
custom_tags=dict([("autogen", True)]),
|
681
669
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
670
|
def predict_proba(
|
688
671
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
689
672
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -724,11 +707,6 @@ class BaggingRegressor(BaseTransformer):
|
|
724
707
|
subproject=_SUBPROJECT,
|
725
708
|
custom_tags=dict([("autogen", True)]),
|
726
709
|
)
|
727
|
-
@telemetry.add_stmt_params_to_df(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
710
|
def predict_log_proba(
|
733
711
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
734
712
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -765,16 +743,6 @@ class BaggingRegressor(BaseTransformer):
|
|
765
743
|
return output_df
|
766
744
|
|
767
745
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
768
|
-
@telemetry.send_api_usage_telemetry(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
|
-
@telemetry.add_stmt_params_to_df(
|
774
|
-
project=_PROJECT,
|
775
|
-
subproject=_SUBPROJECT,
|
776
|
-
custom_tags=dict([("autogen", True)]),
|
777
|
-
)
|
778
746
|
def decision_function(
|
779
747
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
780
748
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -875,11 +843,6 @@ class BaggingRegressor(BaseTransformer):
|
|
875
843
|
subproject=_SUBPROJECT,
|
876
844
|
custom_tags=dict([("autogen", True)]),
|
877
845
|
)
|
878
|
-
@telemetry.add_stmt_params_to_df(
|
879
|
-
project=_PROJECT,
|
880
|
-
subproject=_SUBPROJECT,
|
881
|
-
custom_tags=dict([("autogen", True)]),
|
882
|
-
)
|
883
846
|
def kneighbors(
|
884
847
|
self,
|
885
848
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -939,18 +902,28 @@ class BaggingRegressor(BaseTransformer):
|
|
939
902
|
# For classifier, the type of predict is the same as the type of label
|
940
903
|
if self._sklearn_object._estimator_type == 'classifier':
|
941
904
|
# label columns is the desired type for output
|
942
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
905
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
943
906
|
# rename the output columns
|
944
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
907
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
945
908
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
946
909
|
([] if self._drop_input_cols else inputs)
|
947
910
|
+ outputs)
|
911
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
912
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
913
|
+
# Clusterer returns int64 cluster labels.
|
914
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
915
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
916
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
|
+
([] if self._drop_input_cols else inputs)
|
918
|
+
+ outputs)
|
919
|
+
|
948
920
|
# For regressor, the type of predict is float64
|
949
921
|
elif self._sklearn_object._estimator_type == 'regressor':
|
950
922
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
951
923
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
952
924
|
([] if self._drop_input_cols else inputs)
|
953
925
|
+ outputs)
|
926
|
+
|
954
927
|
for prob_func in PROB_FUNCTIONS:
|
955
928
|
if hasattr(self, prob_func):
|
956
929
|
output_cols_prefix: str = f"{prob_func}_"
|