snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearRegression(BaseTransformer):
|
57
58
|
r"""Ordinary least squares Linear Regression
|
58
59
|
For more details on this class, see [sklearn.linear_model.LinearRegression]
|
@@ -60,6 +61,51 @@ class LinearRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
fit_intercept: bool, default=True
|
64
110
|
Whether to calculate the intercept for this model. If set
|
65
111
|
to False, no intercept will be used in calculations
|
@@ -79,35 +125,6 @@ class LinearRegression(BaseTransformer):
|
|
79
125
|
positive: bool, default=False
|
80
126
|
When set to ``True``, forces the coefficients to be positive. This
|
81
127
|
option is only supported for dense arrays.
|
82
|
-
|
83
|
-
input_cols: Optional[Union[str, List[str]]]
|
84
|
-
A string or list of strings representing column names that contain features.
|
85
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
86
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
87
|
-
considered input columns.
|
88
|
-
|
89
|
-
label_cols: Optional[Union[str, List[str]]]
|
90
|
-
A string or list of strings representing column names that contain labels.
|
91
|
-
This is a required param for estimators, as there is no way to infer these
|
92
|
-
columns. If this parameter is not specified, then object is fitted without
|
93
|
-
labels (like a transformer).
|
94
|
-
|
95
|
-
output_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that will store the
|
97
|
-
output of predict and transform operations. The length of output_cols must
|
98
|
-
match the expected number of output columns from the specific estimator or
|
99
|
-
transformer class used.
|
100
|
-
If this parameter is not specified, output column names are derived by
|
101
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
102
|
-
column names work for estimator's predict() method, but output_cols must
|
103
|
-
be set explicitly for transformers.
|
104
|
-
|
105
|
-
sample_weight_col: Optional[str]
|
106
|
-
A string representing the column name containing the sample weights.
|
107
|
-
This argument is only required when working with weighted datasets.
|
108
|
-
|
109
|
-
drop_input_cols: Optional[bool], default=False
|
110
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
111
128
|
"""
|
112
129
|
|
113
130
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -120,6 +137,7 @@ class LinearRegression(BaseTransformer):
|
|
120
137
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
121
138
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
122
139
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
140
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
123
141
|
drop_input_cols: Optional[bool] = False,
|
124
142
|
sample_weight_col: Optional[str] = None,
|
125
143
|
) -> None:
|
@@ -128,9 +146,10 @@ class LinearRegression(BaseTransformer):
|
|
128
146
|
self.set_input_cols(input_cols)
|
129
147
|
self.set_output_cols(output_cols)
|
130
148
|
self.set_label_cols(label_cols)
|
149
|
+
self.set_passthrough_cols(passthrough_cols)
|
131
150
|
self.set_drop_input_cols(drop_input_cols)
|
132
151
|
self.set_sample_weight_col(sample_weight_col)
|
133
|
-
deps = set(
|
152
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
134
153
|
|
135
154
|
self._deps = list(deps)
|
136
155
|
|
@@ -142,13 +161,14 @@ class LinearRegression(BaseTransformer):
|
|
142
161
|
args=init_args,
|
143
162
|
klass=sklearn.linear_model.LinearRegression
|
144
163
|
)
|
145
|
-
self._sklearn_object = sklearn.linear_model.LinearRegression(
|
164
|
+
self._sklearn_object: Any = sklearn.linear_model.LinearRegression(
|
146
165
|
**cleaned_up_init_args,
|
147
166
|
)
|
148
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
149
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
150
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
151
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
170
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
|
+
self._autogenerated = True
|
152
172
|
|
153
173
|
def _get_rand_id(self) -> str:
|
154
174
|
"""
|
@@ -159,24 +179,6 @@ class LinearRegression(BaseTransformer):
|
|
159
179
|
"""
|
160
180
|
return str(uuid4()).replace("-", "_").upper()
|
161
181
|
|
162
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
163
|
-
"""
|
164
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
165
|
-
|
166
|
-
Args:
|
167
|
-
dataset: Input dataset.
|
168
|
-
"""
|
169
|
-
if not self.input_cols:
|
170
|
-
cols = [
|
171
|
-
c for c in dataset.columns
|
172
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
173
|
-
]
|
174
|
-
self.set_input_cols(input_cols=cols)
|
175
|
-
|
176
|
-
if not self.output_cols:
|
177
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
178
|
-
self.set_output_cols(output_cols=cols)
|
179
|
-
|
180
182
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LinearRegression":
|
181
183
|
"""
|
182
184
|
Input columns setter.
|
@@ -222,54 +224,48 @@ class LinearRegression(BaseTransformer):
|
|
222
224
|
self
|
223
225
|
"""
|
224
226
|
self._infer_input_output_cols(dataset)
|
225
|
-
if isinstance(dataset,
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
self.
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
227
|
+
if isinstance(dataset, DataFrame):
|
228
|
+
session = dataset._session
|
229
|
+
assert session is not None # keep mypy happy
|
230
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
+
|
235
|
+
# Specify input columns so column pruning will be enforced
|
236
|
+
selected_cols = self._get_active_columns()
|
237
|
+
if len(selected_cols) > 0:
|
238
|
+
dataset = dataset.select(selected_cols)
|
239
|
+
|
240
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
+
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
243
|
+
if SNOWML_SPROC_ENV in os.environ:
|
244
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
245
|
+
project=_PROJECT,
|
246
|
+
subproject=_SUBPROJECT,
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearRegression.__class__.__name__),
|
248
|
+
api_calls=[Session.call],
|
249
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
250
|
+
)
|
251
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
252
|
+
pd_df.columns = dataset.columns
|
253
|
+
dataset = pd_df
|
254
|
+
|
255
|
+
model_trainer = ModelTrainerBuilder.build(
|
256
|
+
estimator=self._sklearn_object,
|
257
|
+
dataset=dataset,
|
258
|
+
input_cols=self.input_cols,
|
259
|
+
label_cols=self.label_cols,
|
260
|
+
sample_weight_col=self.sample_weight_col,
|
261
|
+
autogenerated=self._autogenerated,
|
262
|
+
subproject=_SUBPROJECT
|
263
|
+
)
|
264
|
+
self._sklearn_object = model_trainer.train()
|
241
265
|
self._is_fitted = True
|
242
266
|
self._get_model_signatures(dataset)
|
243
267
|
return self
|
244
268
|
|
245
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
246
|
-
session = dataset._session
|
247
|
-
assert session is not None # keep mypy happy
|
248
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
-
|
253
|
-
# Specify input columns so column pruning will be enforced
|
254
|
-
selected_cols = self._get_active_columns()
|
255
|
-
if len(selected_cols) > 0:
|
256
|
-
dataset = dataset.select(selected_cols)
|
257
|
-
|
258
|
-
estimator = self._sklearn_object
|
259
|
-
assert estimator is not None # Keep mypy happy
|
260
|
-
|
261
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
-
|
263
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
264
|
-
dataset,
|
265
|
-
session,
|
266
|
-
estimator,
|
267
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
268
|
-
self.input_cols,
|
269
|
-
self.label_cols,
|
270
|
-
self.sample_weight_col,
|
271
|
-
)
|
272
|
-
|
273
269
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
274
270
|
if self._drop_input_cols:
|
275
271
|
return []
|
@@ -457,11 +453,6 @@ class LinearRegression(BaseTransformer):
|
|
457
453
|
subproject=_SUBPROJECT,
|
458
454
|
custom_tags=dict([("autogen", True)]),
|
459
455
|
)
|
460
|
-
@telemetry.add_stmt_params_to_df(
|
461
|
-
project=_PROJECT,
|
462
|
-
subproject=_SUBPROJECT,
|
463
|
-
custom_tags=dict([("autogen", True)]),
|
464
|
-
)
|
465
456
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
466
457
|
"""Predict using the linear model
|
467
458
|
For more details on this function, see [sklearn.linear_model.LinearRegression.predict]
|
@@ -515,11 +506,6 @@ class LinearRegression(BaseTransformer):
|
|
515
506
|
subproject=_SUBPROJECT,
|
516
507
|
custom_tags=dict([("autogen", True)]),
|
517
508
|
)
|
518
|
-
@telemetry.add_stmt_params_to_df(
|
519
|
-
project=_PROJECT,
|
520
|
-
subproject=_SUBPROJECT,
|
521
|
-
custom_tags=dict([("autogen", True)]),
|
522
|
-
)
|
523
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
524
510
|
"""Method not supported for this class.
|
525
511
|
|
@@ -576,7 +562,8 @@ class LinearRegression(BaseTransformer):
|
|
576
562
|
if False:
|
577
563
|
self.fit(dataset)
|
578
564
|
assert self._sklearn_object is not None
|
579
|
-
|
565
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
566
|
+
return labels
|
580
567
|
else:
|
581
568
|
raise NotImplementedError
|
582
569
|
|
@@ -612,6 +599,7 @@ class LinearRegression(BaseTransformer):
|
|
612
599
|
output_cols = []
|
613
600
|
|
614
601
|
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
615
603
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
616
604
|
|
617
605
|
return rv
|
@@ -622,11 +610,6 @@ class LinearRegression(BaseTransformer):
|
|
622
610
|
subproject=_SUBPROJECT,
|
623
611
|
custom_tags=dict([("autogen", True)]),
|
624
612
|
)
|
625
|
-
@telemetry.add_stmt_params_to_df(
|
626
|
-
project=_PROJECT,
|
627
|
-
subproject=_SUBPROJECT,
|
628
|
-
custom_tags=dict([("autogen", True)]),
|
629
|
-
)
|
630
613
|
def predict_proba(
|
631
614
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
632
615
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -667,11 +650,6 @@ class LinearRegression(BaseTransformer):
|
|
667
650
|
subproject=_SUBPROJECT,
|
668
651
|
custom_tags=dict([("autogen", True)]),
|
669
652
|
)
|
670
|
-
@telemetry.add_stmt_params_to_df(
|
671
|
-
project=_PROJECT,
|
672
|
-
subproject=_SUBPROJECT,
|
673
|
-
custom_tags=dict([("autogen", True)]),
|
674
|
-
)
|
675
653
|
def predict_log_proba(
|
676
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
677
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -708,16 +686,6 @@ class LinearRegression(BaseTransformer):
|
|
708
686
|
return output_df
|
709
687
|
|
710
688
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
711
|
-
@telemetry.send_api_usage_telemetry(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
|
-
@telemetry.add_stmt_params_to_df(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
689
|
def decision_function(
|
722
690
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
723
691
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -818,11 +786,6 @@ class LinearRegression(BaseTransformer):
|
|
818
786
|
subproject=_SUBPROJECT,
|
819
787
|
custom_tags=dict([("autogen", True)]),
|
820
788
|
)
|
821
|
-
@telemetry.add_stmt_params_to_df(
|
822
|
-
project=_PROJECT,
|
823
|
-
subproject=_SUBPROJECT,
|
824
|
-
custom_tags=dict([("autogen", True)]),
|
825
|
-
)
|
826
789
|
def kneighbors(
|
827
790
|
self,
|
828
791
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -882,18 +845,28 @@ class LinearRegression(BaseTransformer):
|
|
882
845
|
# For classifier, the type of predict is the same as the type of label
|
883
846
|
if self._sklearn_object._estimator_type == 'classifier':
|
884
847
|
# label columns is the desired type for output
|
885
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
848
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
886
849
|
# rename the output columns
|
887
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
850
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
888
851
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
889
852
|
([] if self._drop_input_cols else inputs)
|
890
853
|
+ outputs)
|
854
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
855
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
856
|
+
# Clusterer returns int64 cluster labels.
|
857
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
858
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
859
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
860
|
+
([] if self._drop_input_cols else inputs)
|
861
|
+
+ outputs)
|
862
|
+
|
891
863
|
# For regressor, the type of predict is float64
|
892
864
|
elif self._sklearn_object._estimator_type == 'regressor':
|
893
865
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
894
866
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
895
867
|
([] if self._drop_input_cols else inputs)
|
896
868
|
+ outputs)
|
869
|
+
|
897
870
|
for prob_func in PROB_FUNCTIONS:
|
898
871
|
if hasattr(self, prob_func):
|
899
872
|
output_cols_prefix: str = f"{prob_func}_"
|