snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class DecisionTreeClassifier(BaseTransformer):
57
58
  r"""A decision tree classifier
58
59
  For more details on this class, see [sklearn.tree.DecisionTreeClassifier]
@@ -60,6 +61,51 @@ class DecisionTreeClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  criterion: {"gini", "entropy", "log_loss"}, default="gini"
64
110
  The function to measure the quality of a split. Supported criteria are
65
111
  "gini" for the Gini impurity and "log_loss" and "entropy" both for the
@@ -174,35 +220,6 @@ class DecisionTreeClassifier(BaseTransformer):
174
220
  subtree with the largest cost complexity that is smaller than
175
221
  ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
176
222
  :ref:`minimal_cost_complexity_pruning` for details.
177
-
178
- input_cols: Optional[Union[str, List[str]]]
179
- A string or list of strings representing column names that contain features.
180
- If this parameter is not specified, all columns in the input DataFrame except
181
- the columns specified by label_cols and sample_weight_col parameters are
182
- considered input columns.
183
-
184
- label_cols: Optional[Union[str, List[str]]]
185
- A string or list of strings representing column names that contain labels.
186
- This is a required param for estimators, as there is no way to infer these
187
- columns. If this parameter is not specified, then object is fitted without
188
- labels (like a transformer).
189
-
190
- output_cols: Optional[Union[str, List[str]]]
191
- A string or list of strings representing column names that will store the
192
- output of predict and transform operations. The length of output_cols must
193
- match the expected number of output columns from the specific estimator or
194
- transformer class used.
195
- If this parameter is not specified, output column names are derived by
196
- adding an OUTPUT_ prefix to the label column names. These inferred output
197
- column names work for estimator's predict() method, but output_cols must
198
- be set explicitly for transformers.
199
-
200
- sample_weight_col: Optional[str]
201
- A string representing the column name containing the sample weights.
202
- This argument is only required when working with weighted datasets.
203
-
204
- drop_input_cols: Optional[bool], default=False
205
- If set, the response of predict(), transform() methods will not contain input columns.
206
223
  """
207
224
 
208
225
  def __init__( # type: ignore[no-untyped-def]
@@ -223,6 +240,7 @@ class DecisionTreeClassifier(BaseTransformer):
223
240
  input_cols: Optional[Union[str, Iterable[str]]] = None,
224
241
  output_cols: Optional[Union[str, Iterable[str]]] = None,
225
242
  label_cols: Optional[Union[str, Iterable[str]]] = None,
243
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
226
244
  drop_input_cols: Optional[bool] = False,
227
245
  sample_weight_col: Optional[str] = None,
228
246
  ) -> None:
@@ -231,9 +249,10 @@ class DecisionTreeClassifier(BaseTransformer):
231
249
  self.set_input_cols(input_cols)
232
250
  self.set_output_cols(output_cols)
233
251
  self.set_label_cols(label_cols)
252
+ self.set_passthrough_cols(passthrough_cols)
234
253
  self.set_drop_input_cols(drop_input_cols)
235
254
  self.set_sample_weight_col(sample_weight_col)
236
- deps = set(SklearnWrapperProvider().dependencies)
255
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
237
256
 
238
257
  self._deps = list(deps)
239
258
 
@@ -253,13 +272,14 @@ class DecisionTreeClassifier(BaseTransformer):
253
272
  args=init_args,
254
273
  klass=sklearn.tree.DecisionTreeClassifier
255
274
  )
256
- self._sklearn_object = sklearn.tree.DecisionTreeClassifier(
275
+ self._sklearn_object: Any = sklearn.tree.DecisionTreeClassifier(
257
276
  **cleaned_up_init_args,
258
277
  )
259
278
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
260
279
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
261
280
  self._snowpark_cols: Optional[List[str]] = self.input_cols
262
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
281
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
282
+ self._autogenerated = True
263
283
 
264
284
  def _get_rand_id(self) -> str:
265
285
  """
@@ -270,24 +290,6 @@ class DecisionTreeClassifier(BaseTransformer):
270
290
  """
271
291
  return str(uuid4()).replace("-", "_").upper()
272
292
 
273
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
274
- """
275
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
276
-
277
- Args:
278
- dataset: Input dataset.
279
- """
280
- if not self.input_cols:
281
- cols = [
282
- c for c in dataset.columns
283
- if c not in self.get_label_cols() and c != self.sample_weight_col
284
- ]
285
- self.set_input_cols(input_cols=cols)
286
-
287
- if not self.output_cols:
288
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
289
- self.set_output_cols(output_cols=cols)
290
-
291
293
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "DecisionTreeClassifier":
292
294
  """
293
295
  Input columns setter.
@@ -333,54 +335,48 @@ class DecisionTreeClassifier(BaseTransformer):
333
335
  self
334
336
  """
335
337
  self._infer_input_output_cols(dataset)
336
- if isinstance(dataset, pd.DataFrame):
337
- assert self._sklearn_object is not None # keep mypy happy
338
- self._sklearn_object = self._handlers.fit_pandas(
339
- dataset,
340
- self._sklearn_object,
341
- self.input_cols,
342
- self.label_cols,
343
- self.sample_weight_col
344
- )
345
- elif isinstance(dataset, DataFrame):
346
- self._fit_snowpark(dataset)
347
- else:
348
- raise TypeError(
349
- f"Unexpected dataset type: {type(dataset)}."
350
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
351
- )
338
+ if isinstance(dataset, DataFrame):
339
+ session = dataset._session
340
+ assert session is not None # keep mypy happy
341
+ # Validate that key package version in user workspace are supported in snowflake conda channel
342
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
343
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
344
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
345
+
346
+ # Specify input columns so column pruning will be enforced
347
+ selected_cols = self._get_active_columns()
348
+ if len(selected_cols) > 0:
349
+ dataset = dataset.select(selected_cols)
350
+
351
+ self._snowpark_cols = dataset.select(self.input_cols).columns
352
+
353
+ # If we are already in a stored procedure, no need to kick off another one.
354
+ if SNOWML_SPROC_ENV in os.environ:
355
+ statement_params = telemetry.get_function_usage_statement_params(
356
+ project=_PROJECT,
357
+ subproject=_SUBPROJECT,
358
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeClassifier.__class__.__name__),
359
+ api_calls=[Session.call],
360
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
361
+ )
362
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
363
+ pd_df.columns = dataset.columns
364
+ dataset = pd_df
365
+
366
+ model_trainer = ModelTrainerBuilder.build(
367
+ estimator=self._sklearn_object,
368
+ dataset=dataset,
369
+ input_cols=self.input_cols,
370
+ label_cols=self.label_cols,
371
+ sample_weight_col=self.sample_weight_col,
372
+ autogenerated=self._autogenerated,
373
+ subproject=_SUBPROJECT
374
+ )
375
+ self._sklearn_object = model_trainer.train()
352
376
  self._is_fitted = True
353
377
  self._get_model_signatures(dataset)
354
378
  return self
355
379
 
356
- def _fit_snowpark(self, dataset: DataFrame) -> None:
357
- session = dataset._session
358
- assert session is not None # keep mypy happy
359
- # Validate that key package version in user workspace are supported in snowflake conda channel
360
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
361
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
362
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
363
-
364
- # Specify input columns so column pruning will be enforced
365
- selected_cols = self._get_active_columns()
366
- if len(selected_cols) > 0:
367
- dataset = dataset.select(selected_cols)
368
-
369
- estimator = self._sklearn_object
370
- assert estimator is not None # Keep mypy happy
371
-
372
- self._snowpark_cols = dataset.select(self.input_cols).columns
373
-
374
- self._sklearn_object = self._handlers.fit_snowpark(
375
- dataset,
376
- session,
377
- estimator,
378
- ["snowflake-snowpark-python"] + self._get_dependencies(),
379
- self.input_cols,
380
- self.label_cols,
381
- self.sample_weight_col,
382
- )
383
-
384
380
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
385
381
  if self._drop_input_cols:
386
382
  return []
@@ -568,11 +564,6 @@ class DecisionTreeClassifier(BaseTransformer):
568
564
  subproject=_SUBPROJECT,
569
565
  custom_tags=dict([("autogen", True)]),
570
566
  )
571
- @telemetry.add_stmt_params_to_df(
572
- project=_PROJECT,
573
- subproject=_SUBPROJECT,
574
- custom_tags=dict([("autogen", True)]),
575
- )
576
567
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
577
568
  """Predict class or regression value for X
578
569
  For more details on this function, see [sklearn.tree.DecisionTreeClassifier.predict]
@@ -626,11 +617,6 @@ class DecisionTreeClassifier(BaseTransformer):
626
617
  subproject=_SUBPROJECT,
627
618
  custom_tags=dict([("autogen", True)]),
628
619
  )
629
- @telemetry.add_stmt_params_to_df(
630
- project=_PROJECT,
631
- subproject=_SUBPROJECT,
632
- custom_tags=dict([("autogen", True)]),
633
- )
634
620
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
635
621
  """Method not supported for this class.
636
622
 
@@ -687,7 +673,8 @@ class DecisionTreeClassifier(BaseTransformer):
687
673
  if False:
688
674
  self.fit(dataset)
689
675
  assert self._sklearn_object is not None
690
- return self._sklearn_object.labels_
676
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
677
+ return labels
691
678
  else:
692
679
  raise NotImplementedError
693
680
 
@@ -723,6 +710,7 @@ class DecisionTreeClassifier(BaseTransformer):
723
710
  output_cols = []
724
711
 
725
712
  # Make sure column names are valid snowflake identifiers.
713
+ assert output_cols is not None # Make MyPy happy
726
714
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
727
715
 
728
716
  return rv
@@ -733,11 +721,6 @@ class DecisionTreeClassifier(BaseTransformer):
733
721
  subproject=_SUBPROJECT,
734
722
  custom_tags=dict([("autogen", True)]),
735
723
  )
736
- @telemetry.add_stmt_params_to_df(
737
- project=_PROJECT,
738
- subproject=_SUBPROJECT,
739
- custom_tags=dict([("autogen", True)]),
740
- )
741
724
  def predict_proba(
742
725
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
743
726
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -780,11 +763,6 @@ class DecisionTreeClassifier(BaseTransformer):
780
763
  subproject=_SUBPROJECT,
781
764
  custom_tags=dict([("autogen", True)]),
782
765
  )
783
- @telemetry.add_stmt_params_to_df(
784
- project=_PROJECT,
785
- subproject=_SUBPROJECT,
786
- custom_tags=dict([("autogen", True)]),
787
- )
788
766
  def predict_log_proba(
789
767
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
790
768
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -823,16 +801,6 @@ class DecisionTreeClassifier(BaseTransformer):
823
801
  return output_df
824
802
 
825
803
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
826
- @telemetry.send_api_usage_telemetry(
827
- project=_PROJECT,
828
- subproject=_SUBPROJECT,
829
- custom_tags=dict([("autogen", True)]),
830
- )
831
- @telemetry.add_stmt_params_to_df(
832
- project=_PROJECT,
833
- subproject=_SUBPROJECT,
834
- custom_tags=dict([("autogen", True)]),
835
- )
836
804
  def decision_function(
837
805
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
838
806
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -933,11 +901,6 @@ class DecisionTreeClassifier(BaseTransformer):
933
901
  subproject=_SUBPROJECT,
934
902
  custom_tags=dict([("autogen", True)]),
935
903
  )
936
- @telemetry.add_stmt_params_to_df(
937
- project=_PROJECT,
938
- subproject=_SUBPROJECT,
939
- custom_tags=dict([("autogen", True)]),
940
- )
941
904
  def kneighbors(
942
905
  self,
943
906
  dataset: Union[DataFrame, pd.DataFrame],
@@ -997,18 +960,28 @@ class DecisionTreeClassifier(BaseTransformer):
997
960
  # For classifier, the type of predict is the same as the type of label
998
961
  if self._sklearn_object._estimator_type == 'classifier':
999
962
  # label columns is the desired type for output
1000
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
963
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1001
964
  # rename the output columns
1002
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
965
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1003
966
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
967
  ([] if self._drop_input_cols else inputs)
1005
968
  + outputs)
969
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
970
+ # For outlier models, returns -1 for outliers and 1 for inliers.
971
+ # Clusterer returns int64 cluster labels.
972
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
973
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
974
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
975
+ ([] if self._drop_input_cols else inputs)
976
+ + outputs)
977
+
1006
978
  # For regressor, the type of predict is float64
1007
979
  elif self._sklearn_object._estimator_type == 'regressor':
1008
980
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1009
981
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
982
  ([] if self._drop_input_cols else inputs)
1011
983
  + outputs)
984
+
1012
985
  for prob_func in PROB_FUNCTIONS:
1013
986
  if hasattr(self, prob_func):
1014
987
  output_cols_prefix: str = f"{prob_func}_"