snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class DecisionTreeClassifier(BaseTransformer):
|
57
58
|
r"""A decision tree classifier
|
58
59
|
For more details on this class, see [sklearn.tree.DecisionTreeClassifier]
|
@@ -60,6 +61,51 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"gini", "entropy", "log_loss"}, default="gini"
|
64
110
|
The function to measure the quality of a split. Supported criteria are
|
65
111
|
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
|
@@ -174,35 +220,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
174
220
|
subtree with the largest cost complexity that is smaller than
|
175
221
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
176
222
|
:ref:`minimal_cost_complexity_pruning` for details.
|
177
|
-
|
178
|
-
input_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that contain features.
|
180
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
181
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
182
|
-
considered input columns.
|
183
|
-
|
184
|
-
label_cols: Optional[Union[str, List[str]]]
|
185
|
-
A string or list of strings representing column names that contain labels.
|
186
|
-
This is a required param for estimators, as there is no way to infer these
|
187
|
-
columns. If this parameter is not specified, then object is fitted without
|
188
|
-
labels (like a transformer).
|
189
|
-
|
190
|
-
output_cols: Optional[Union[str, List[str]]]
|
191
|
-
A string or list of strings representing column names that will store the
|
192
|
-
output of predict and transform operations. The length of output_cols must
|
193
|
-
match the expected number of output columns from the specific estimator or
|
194
|
-
transformer class used.
|
195
|
-
If this parameter is not specified, output column names are derived by
|
196
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
197
|
-
column names work for estimator's predict() method, but output_cols must
|
198
|
-
be set explicitly for transformers.
|
199
|
-
|
200
|
-
sample_weight_col: Optional[str]
|
201
|
-
A string representing the column name containing the sample weights.
|
202
|
-
This argument is only required when working with weighted datasets.
|
203
|
-
|
204
|
-
drop_input_cols: Optional[bool], default=False
|
205
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
206
223
|
"""
|
207
224
|
|
208
225
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -223,6 +240,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
223
240
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
224
241
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
225
242
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
243
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
226
244
|
drop_input_cols: Optional[bool] = False,
|
227
245
|
sample_weight_col: Optional[str] = None,
|
228
246
|
) -> None:
|
@@ -231,9 +249,10 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
231
249
|
self.set_input_cols(input_cols)
|
232
250
|
self.set_output_cols(output_cols)
|
233
251
|
self.set_label_cols(label_cols)
|
252
|
+
self.set_passthrough_cols(passthrough_cols)
|
234
253
|
self.set_drop_input_cols(drop_input_cols)
|
235
254
|
self.set_sample_weight_col(sample_weight_col)
|
236
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
237
256
|
|
238
257
|
self._deps = list(deps)
|
239
258
|
|
@@ -253,13 +272,14 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
253
272
|
args=init_args,
|
254
273
|
klass=sklearn.tree.DecisionTreeClassifier
|
255
274
|
)
|
256
|
-
self._sklearn_object = sklearn.tree.DecisionTreeClassifier(
|
275
|
+
self._sklearn_object: Any = sklearn.tree.DecisionTreeClassifier(
|
257
276
|
**cleaned_up_init_args,
|
258
277
|
)
|
259
278
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
260
279
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
261
280
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
262
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
281
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
282
|
+
self._autogenerated = True
|
263
283
|
|
264
284
|
def _get_rand_id(self) -> str:
|
265
285
|
"""
|
@@ -270,24 +290,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
270
290
|
"""
|
271
291
|
return str(uuid4()).replace("-", "_").upper()
|
272
292
|
|
273
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
274
|
-
"""
|
275
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
276
|
-
|
277
|
-
Args:
|
278
|
-
dataset: Input dataset.
|
279
|
-
"""
|
280
|
-
if not self.input_cols:
|
281
|
-
cols = [
|
282
|
-
c for c in dataset.columns
|
283
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
284
|
-
]
|
285
|
-
self.set_input_cols(input_cols=cols)
|
286
|
-
|
287
|
-
if not self.output_cols:
|
288
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
289
|
-
self.set_output_cols(output_cols=cols)
|
290
|
-
|
291
293
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "DecisionTreeClassifier":
|
292
294
|
"""
|
293
295
|
Input columns setter.
|
@@ -333,54 +335,48 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
333
335
|
self
|
334
336
|
"""
|
335
337
|
self._infer_input_output_cols(dataset)
|
336
|
-
if isinstance(dataset,
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
self.
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
338
|
+
if isinstance(dataset, DataFrame):
|
339
|
+
session = dataset._session
|
340
|
+
assert session is not None # keep mypy happy
|
341
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
342
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
343
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
344
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
345
|
+
|
346
|
+
# Specify input columns so column pruning will be enforced
|
347
|
+
selected_cols = self._get_active_columns()
|
348
|
+
if len(selected_cols) > 0:
|
349
|
+
dataset = dataset.select(selected_cols)
|
350
|
+
|
351
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
352
|
+
|
353
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
354
|
+
if SNOWML_SPROC_ENV in os.environ:
|
355
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
356
|
+
project=_PROJECT,
|
357
|
+
subproject=_SUBPROJECT,
|
358
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeClassifier.__class__.__name__),
|
359
|
+
api_calls=[Session.call],
|
360
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
361
|
+
)
|
362
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
363
|
+
pd_df.columns = dataset.columns
|
364
|
+
dataset = pd_df
|
365
|
+
|
366
|
+
model_trainer = ModelTrainerBuilder.build(
|
367
|
+
estimator=self._sklearn_object,
|
368
|
+
dataset=dataset,
|
369
|
+
input_cols=self.input_cols,
|
370
|
+
label_cols=self.label_cols,
|
371
|
+
sample_weight_col=self.sample_weight_col,
|
372
|
+
autogenerated=self._autogenerated,
|
373
|
+
subproject=_SUBPROJECT
|
374
|
+
)
|
375
|
+
self._sklearn_object = model_trainer.train()
|
352
376
|
self._is_fitted = True
|
353
377
|
self._get_model_signatures(dataset)
|
354
378
|
return self
|
355
379
|
|
356
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
357
|
-
session = dataset._session
|
358
|
-
assert session is not None # keep mypy happy
|
359
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
360
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
361
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
362
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
363
|
-
|
364
|
-
# Specify input columns so column pruning will be enforced
|
365
|
-
selected_cols = self._get_active_columns()
|
366
|
-
if len(selected_cols) > 0:
|
367
|
-
dataset = dataset.select(selected_cols)
|
368
|
-
|
369
|
-
estimator = self._sklearn_object
|
370
|
-
assert estimator is not None # Keep mypy happy
|
371
|
-
|
372
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
373
|
-
|
374
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
375
|
-
dataset,
|
376
|
-
session,
|
377
|
-
estimator,
|
378
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
379
|
-
self.input_cols,
|
380
|
-
self.label_cols,
|
381
|
-
self.sample_weight_col,
|
382
|
-
)
|
383
|
-
|
384
380
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
385
381
|
if self._drop_input_cols:
|
386
382
|
return []
|
@@ -568,11 +564,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
568
564
|
subproject=_SUBPROJECT,
|
569
565
|
custom_tags=dict([("autogen", True)]),
|
570
566
|
)
|
571
|
-
@telemetry.add_stmt_params_to_df(
|
572
|
-
project=_PROJECT,
|
573
|
-
subproject=_SUBPROJECT,
|
574
|
-
custom_tags=dict([("autogen", True)]),
|
575
|
-
)
|
576
567
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
577
568
|
"""Predict class or regression value for X
|
578
569
|
For more details on this function, see [sklearn.tree.DecisionTreeClassifier.predict]
|
@@ -626,11 +617,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
626
617
|
subproject=_SUBPROJECT,
|
627
618
|
custom_tags=dict([("autogen", True)]),
|
628
619
|
)
|
629
|
-
@telemetry.add_stmt_params_to_df(
|
630
|
-
project=_PROJECT,
|
631
|
-
subproject=_SUBPROJECT,
|
632
|
-
custom_tags=dict([("autogen", True)]),
|
633
|
-
)
|
634
620
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
635
621
|
"""Method not supported for this class.
|
636
622
|
|
@@ -687,7 +673,8 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
687
673
|
if False:
|
688
674
|
self.fit(dataset)
|
689
675
|
assert self._sklearn_object is not None
|
690
|
-
|
676
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
677
|
+
return labels
|
691
678
|
else:
|
692
679
|
raise NotImplementedError
|
693
680
|
|
@@ -723,6 +710,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
723
710
|
output_cols = []
|
724
711
|
|
725
712
|
# Make sure column names are valid snowflake identifiers.
|
713
|
+
assert output_cols is not None # Make MyPy happy
|
726
714
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
727
715
|
|
728
716
|
return rv
|
@@ -733,11 +721,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
733
721
|
subproject=_SUBPROJECT,
|
734
722
|
custom_tags=dict([("autogen", True)]),
|
735
723
|
)
|
736
|
-
@telemetry.add_stmt_params_to_df(
|
737
|
-
project=_PROJECT,
|
738
|
-
subproject=_SUBPROJECT,
|
739
|
-
custom_tags=dict([("autogen", True)]),
|
740
|
-
)
|
741
724
|
def predict_proba(
|
742
725
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
743
726
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -780,11 +763,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
780
763
|
subproject=_SUBPROJECT,
|
781
764
|
custom_tags=dict([("autogen", True)]),
|
782
765
|
)
|
783
|
-
@telemetry.add_stmt_params_to_df(
|
784
|
-
project=_PROJECT,
|
785
|
-
subproject=_SUBPROJECT,
|
786
|
-
custom_tags=dict([("autogen", True)]),
|
787
|
-
)
|
788
766
|
def predict_log_proba(
|
789
767
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
790
768
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -823,16 +801,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
823
801
|
return output_df
|
824
802
|
|
825
803
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
826
|
-
@telemetry.send_api_usage_telemetry(
|
827
|
-
project=_PROJECT,
|
828
|
-
subproject=_SUBPROJECT,
|
829
|
-
custom_tags=dict([("autogen", True)]),
|
830
|
-
)
|
831
|
-
@telemetry.add_stmt_params_to_df(
|
832
|
-
project=_PROJECT,
|
833
|
-
subproject=_SUBPROJECT,
|
834
|
-
custom_tags=dict([("autogen", True)]),
|
835
|
-
)
|
836
804
|
def decision_function(
|
837
805
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
838
806
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -933,11 +901,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
933
901
|
subproject=_SUBPROJECT,
|
934
902
|
custom_tags=dict([("autogen", True)]),
|
935
903
|
)
|
936
|
-
@telemetry.add_stmt_params_to_df(
|
937
|
-
project=_PROJECT,
|
938
|
-
subproject=_SUBPROJECT,
|
939
|
-
custom_tags=dict([("autogen", True)]),
|
940
|
-
)
|
941
904
|
def kneighbors(
|
942
905
|
self,
|
943
906
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -997,18 +960,28 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
997
960
|
# For classifier, the type of predict is the same as the type of label
|
998
961
|
if self._sklearn_object._estimator_type == 'classifier':
|
999
962
|
# label columns is the desired type for output
|
1000
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
963
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1001
964
|
# rename the output columns
|
1002
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
965
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1003
966
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1004
967
|
([] if self._drop_input_cols else inputs)
|
1005
968
|
+ outputs)
|
969
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
970
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
971
|
+
# Clusterer returns int64 cluster labels.
|
972
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
973
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
974
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
975
|
+
([] if self._drop_input_cols else inputs)
|
976
|
+
+ outputs)
|
977
|
+
|
1006
978
|
# For regressor, the type of predict is float64
|
1007
979
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1008
980
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1009
981
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1010
982
|
([] if self._drop_input_cols else inputs)
|
1011
983
|
+ outputs)
|
984
|
+
|
1012
985
|
for prob_func in PROB_FUNCTIONS:
|
1013
986
|
if hasattr(self, prob_func):
|
1014
987
|
output_cols_prefix: str = f"{prob_func}_"
|