snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ARDRegression(BaseTransformer):
|
57
58
|
r"""Bayesian ARD regression
|
58
59
|
For more details on this class, see [sklearn.linear_model.ARDRegression]
|
@@ -60,6 +61,51 @@ class ARDRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
max_iter: int, default=None
|
64
110
|
Maximum number of iterations. If `None`, it corresponds to `max_iter=300`.
|
65
111
|
|
@@ -102,35 +148,6 @@ class ARDRegression(BaseTransformer):
|
|
102
148
|
|
103
149
|
n_iter: int
|
104
150
|
Maximum number of iterations.
|
105
|
-
|
106
|
-
input_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain features.
|
108
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
109
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
110
|
-
considered input columns.
|
111
|
-
|
112
|
-
label_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that contain labels.
|
114
|
-
This is a required param for estimators, as there is no way to infer these
|
115
|
-
columns. If this parameter is not specified, then object is fitted without
|
116
|
-
labels (like a transformer).
|
117
|
-
|
118
|
-
output_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that will store the
|
120
|
-
output of predict and transform operations. The length of output_cols must
|
121
|
-
match the expected number of output columns from the specific estimator or
|
122
|
-
transformer class used.
|
123
|
-
If this parameter is not specified, output column names are derived by
|
124
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
125
|
-
column names work for estimator's predict() method, but output_cols must
|
126
|
-
be set explicitly for transformers.
|
127
|
-
|
128
|
-
sample_weight_col: Optional[str]
|
129
|
-
A string representing the column name containing the sample weights.
|
130
|
-
This argument is only required when working with weighted datasets.
|
131
|
-
|
132
|
-
drop_input_cols: Optional[bool], default=False
|
133
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
134
151
|
"""
|
135
152
|
|
136
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -151,6 +168,7 @@ class ARDRegression(BaseTransformer):
|
|
151
168
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
152
169
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
153
170
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
171
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
154
172
|
drop_input_cols: Optional[bool] = False,
|
155
173
|
sample_weight_col: Optional[str] = None,
|
156
174
|
) -> None:
|
@@ -159,9 +177,10 @@ class ARDRegression(BaseTransformer):
|
|
159
177
|
self.set_input_cols(input_cols)
|
160
178
|
self.set_output_cols(output_cols)
|
161
179
|
self.set_label_cols(label_cols)
|
180
|
+
self.set_passthrough_cols(passthrough_cols)
|
162
181
|
self.set_drop_input_cols(drop_input_cols)
|
163
182
|
self.set_sample_weight_col(sample_weight_col)
|
164
|
-
deps = set(
|
183
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
165
184
|
|
166
185
|
self._deps = list(deps)
|
167
186
|
|
@@ -181,13 +200,14 @@ class ARDRegression(BaseTransformer):
|
|
181
200
|
args=init_args,
|
182
201
|
klass=sklearn.linear_model.ARDRegression
|
183
202
|
)
|
184
|
-
self._sklearn_object = sklearn.linear_model.ARDRegression(
|
203
|
+
self._sklearn_object: Any = sklearn.linear_model.ARDRegression(
|
185
204
|
**cleaned_up_init_args,
|
186
205
|
)
|
187
206
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
188
207
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
189
208
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
190
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
209
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
210
|
+
self._autogenerated = True
|
191
211
|
|
192
212
|
def _get_rand_id(self) -> str:
|
193
213
|
"""
|
@@ -198,24 +218,6 @@ class ARDRegression(BaseTransformer):
|
|
198
218
|
"""
|
199
219
|
return str(uuid4()).replace("-", "_").upper()
|
200
220
|
|
201
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
202
|
-
"""
|
203
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
204
|
-
|
205
|
-
Args:
|
206
|
-
dataset: Input dataset.
|
207
|
-
"""
|
208
|
-
if not self.input_cols:
|
209
|
-
cols = [
|
210
|
-
c for c in dataset.columns
|
211
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
212
|
-
]
|
213
|
-
self.set_input_cols(input_cols=cols)
|
214
|
-
|
215
|
-
if not self.output_cols:
|
216
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
217
|
-
self.set_output_cols(output_cols=cols)
|
218
|
-
|
219
221
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ARDRegression":
|
220
222
|
"""
|
221
223
|
Input columns setter.
|
@@ -261,54 +263,48 @@ class ARDRegression(BaseTransformer):
|
|
261
263
|
self
|
262
264
|
"""
|
263
265
|
self._infer_input_output_cols(dataset)
|
264
|
-
if isinstance(dataset,
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
self.
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
266
|
+
if isinstance(dataset, DataFrame):
|
267
|
+
session = dataset._session
|
268
|
+
assert session is not None # keep mypy happy
|
269
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
270
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
271
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
272
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
273
|
+
|
274
|
+
# Specify input columns so column pruning will be enforced
|
275
|
+
selected_cols = self._get_active_columns()
|
276
|
+
if len(selected_cols) > 0:
|
277
|
+
dataset = dataset.select(selected_cols)
|
278
|
+
|
279
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
280
|
+
|
281
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
282
|
+
if SNOWML_SPROC_ENV in os.environ:
|
283
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
284
|
+
project=_PROJECT,
|
285
|
+
subproject=_SUBPROJECT,
|
286
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ARDRegression.__class__.__name__),
|
287
|
+
api_calls=[Session.call],
|
288
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
289
|
+
)
|
290
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
291
|
+
pd_df.columns = dataset.columns
|
292
|
+
dataset = pd_df
|
293
|
+
|
294
|
+
model_trainer = ModelTrainerBuilder.build(
|
295
|
+
estimator=self._sklearn_object,
|
296
|
+
dataset=dataset,
|
297
|
+
input_cols=self.input_cols,
|
298
|
+
label_cols=self.label_cols,
|
299
|
+
sample_weight_col=self.sample_weight_col,
|
300
|
+
autogenerated=self._autogenerated,
|
301
|
+
subproject=_SUBPROJECT
|
302
|
+
)
|
303
|
+
self._sklearn_object = model_trainer.train()
|
280
304
|
self._is_fitted = True
|
281
305
|
self._get_model_signatures(dataset)
|
282
306
|
return self
|
283
307
|
|
284
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
285
|
-
session = dataset._session
|
286
|
-
assert session is not None # keep mypy happy
|
287
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
288
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
289
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
290
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
291
|
-
|
292
|
-
# Specify input columns so column pruning will be enforced
|
293
|
-
selected_cols = self._get_active_columns()
|
294
|
-
if len(selected_cols) > 0:
|
295
|
-
dataset = dataset.select(selected_cols)
|
296
|
-
|
297
|
-
estimator = self._sklearn_object
|
298
|
-
assert estimator is not None # Keep mypy happy
|
299
|
-
|
300
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
301
|
-
|
302
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
303
|
-
dataset,
|
304
|
-
session,
|
305
|
-
estimator,
|
306
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
307
|
-
self.input_cols,
|
308
|
-
self.label_cols,
|
309
|
-
self.sample_weight_col,
|
310
|
-
)
|
311
|
-
|
312
308
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
313
309
|
if self._drop_input_cols:
|
314
310
|
return []
|
@@ -496,11 +492,6 @@ class ARDRegression(BaseTransformer):
|
|
496
492
|
subproject=_SUBPROJECT,
|
497
493
|
custom_tags=dict([("autogen", True)]),
|
498
494
|
)
|
499
|
-
@telemetry.add_stmt_params_to_df(
|
500
|
-
project=_PROJECT,
|
501
|
-
subproject=_SUBPROJECT,
|
502
|
-
custom_tags=dict([("autogen", True)]),
|
503
|
-
)
|
504
495
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
505
496
|
"""Predict using the linear model
|
506
497
|
For more details on this function, see [sklearn.linear_model.ARDRegression.predict]
|
@@ -554,11 +545,6 @@ class ARDRegression(BaseTransformer):
|
|
554
545
|
subproject=_SUBPROJECT,
|
555
546
|
custom_tags=dict([("autogen", True)]),
|
556
547
|
)
|
557
|
-
@telemetry.add_stmt_params_to_df(
|
558
|
-
project=_PROJECT,
|
559
|
-
subproject=_SUBPROJECT,
|
560
|
-
custom_tags=dict([("autogen", True)]),
|
561
|
-
)
|
562
548
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
563
549
|
"""Method not supported for this class.
|
564
550
|
|
@@ -615,7 +601,8 @@ class ARDRegression(BaseTransformer):
|
|
615
601
|
if False:
|
616
602
|
self.fit(dataset)
|
617
603
|
assert self._sklearn_object is not None
|
618
|
-
|
604
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
605
|
+
return labels
|
619
606
|
else:
|
620
607
|
raise NotImplementedError
|
621
608
|
|
@@ -651,6 +638,7 @@ class ARDRegression(BaseTransformer):
|
|
651
638
|
output_cols = []
|
652
639
|
|
653
640
|
# Make sure column names are valid snowflake identifiers.
|
641
|
+
assert output_cols is not None # Make MyPy happy
|
654
642
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
655
643
|
|
656
644
|
return rv
|
@@ -661,11 +649,6 @@ class ARDRegression(BaseTransformer):
|
|
661
649
|
subproject=_SUBPROJECT,
|
662
650
|
custom_tags=dict([("autogen", True)]),
|
663
651
|
)
|
664
|
-
@telemetry.add_stmt_params_to_df(
|
665
|
-
project=_PROJECT,
|
666
|
-
subproject=_SUBPROJECT,
|
667
|
-
custom_tags=dict([("autogen", True)]),
|
668
|
-
)
|
669
652
|
def predict_proba(
|
670
653
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
671
654
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -706,11 +689,6 @@ class ARDRegression(BaseTransformer):
|
|
706
689
|
subproject=_SUBPROJECT,
|
707
690
|
custom_tags=dict([("autogen", True)]),
|
708
691
|
)
|
709
|
-
@telemetry.add_stmt_params_to_df(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
692
|
def predict_log_proba(
|
715
693
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
716
694
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -747,16 +725,6 @@ class ARDRegression(BaseTransformer):
|
|
747
725
|
return output_df
|
748
726
|
|
749
727
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
750
|
-
@telemetry.send_api_usage_telemetry(
|
751
|
-
project=_PROJECT,
|
752
|
-
subproject=_SUBPROJECT,
|
753
|
-
custom_tags=dict([("autogen", True)]),
|
754
|
-
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
728
|
def decision_function(
|
761
729
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
762
730
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -857,11 +825,6 @@ class ARDRegression(BaseTransformer):
|
|
857
825
|
subproject=_SUBPROJECT,
|
858
826
|
custom_tags=dict([("autogen", True)]),
|
859
827
|
)
|
860
|
-
@telemetry.add_stmt_params_to_df(
|
861
|
-
project=_PROJECT,
|
862
|
-
subproject=_SUBPROJECT,
|
863
|
-
custom_tags=dict([("autogen", True)]),
|
864
|
-
)
|
865
828
|
def kneighbors(
|
866
829
|
self,
|
867
830
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -921,18 +884,28 @@ class ARDRegression(BaseTransformer):
|
|
921
884
|
# For classifier, the type of predict is the same as the type of label
|
922
885
|
if self._sklearn_object._estimator_type == 'classifier':
|
923
886
|
# label columns is the desired type for output
|
924
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
887
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
925
888
|
# rename the output columns
|
926
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
889
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
927
890
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
928
891
|
([] if self._drop_input_cols else inputs)
|
929
892
|
+ outputs)
|
893
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
894
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
895
|
+
# Clusterer returns int64 cluster labels.
|
896
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
897
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
898
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
899
|
+
([] if self._drop_input_cols else inputs)
|
900
|
+
+ outputs)
|
901
|
+
|
930
902
|
# For regressor, the type of predict is float64
|
931
903
|
elif self._sklearn_object._estimator_type == 'regressor':
|
932
904
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
933
905
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
934
906
|
([] if self._drop_input_cols else inputs)
|
935
907
|
+ outputs)
|
908
|
+
|
936
909
|
for prob_func in PROB_FUNCTIONS:
|
937
910
|
if hasattr(self, prob_func):
|
938
911
|
output_cols_prefix: str = f"{prob_func}_"
|