snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ARDRegression(BaseTransformer):
57
58
  r"""Bayesian ARD regression
58
59
  For more details on this class, see [sklearn.linear_model.ARDRegression]
@@ -60,6 +61,51 @@ class ARDRegression(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  max_iter: int, default=None
64
110
  Maximum number of iterations. If `None`, it corresponds to `max_iter=300`.
65
111
 
@@ -102,35 +148,6 @@ class ARDRegression(BaseTransformer):
102
148
 
103
149
  n_iter: int
104
150
  Maximum number of iterations.
105
-
106
- input_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that contain features.
108
- If this parameter is not specified, all columns in the input DataFrame except
109
- the columns specified by label_cols and sample_weight_col parameters are
110
- considered input columns.
111
-
112
- label_cols: Optional[Union[str, List[str]]]
113
- A string or list of strings representing column names that contain labels.
114
- This is a required param for estimators, as there is no way to infer these
115
- columns. If this parameter is not specified, then object is fitted without
116
- labels (like a transformer).
117
-
118
- output_cols: Optional[Union[str, List[str]]]
119
- A string or list of strings representing column names that will store the
120
- output of predict and transform operations. The length of output_cols must
121
- match the expected number of output columns from the specific estimator or
122
- transformer class used.
123
- If this parameter is not specified, output column names are derived by
124
- adding an OUTPUT_ prefix to the label column names. These inferred output
125
- column names work for estimator's predict() method, but output_cols must
126
- be set explicitly for transformers.
127
-
128
- sample_weight_col: Optional[str]
129
- A string representing the column name containing the sample weights.
130
- This argument is only required when working with weighted datasets.
131
-
132
- drop_input_cols: Optional[bool], default=False
133
- If set, the response of predict(), transform() methods will not contain input columns.
134
151
  """
135
152
 
136
153
  def __init__( # type: ignore[no-untyped-def]
@@ -151,6 +168,7 @@ class ARDRegression(BaseTransformer):
151
168
  input_cols: Optional[Union[str, Iterable[str]]] = None,
152
169
  output_cols: Optional[Union[str, Iterable[str]]] = None,
153
170
  label_cols: Optional[Union[str, Iterable[str]]] = None,
171
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
154
172
  drop_input_cols: Optional[bool] = False,
155
173
  sample_weight_col: Optional[str] = None,
156
174
  ) -> None:
@@ -159,9 +177,10 @@ class ARDRegression(BaseTransformer):
159
177
  self.set_input_cols(input_cols)
160
178
  self.set_output_cols(output_cols)
161
179
  self.set_label_cols(label_cols)
180
+ self.set_passthrough_cols(passthrough_cols)
162
181
  self.set_drop_input_cols(drop_input_cols)
163
182
  self.set_sample_weight_col(sample_weight_col)
164
- deps = set(SklearnWrapperProvider().dependencies)
183
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
165
184
 
166
185
  self._deps = list(deps)
167
186
 
@@ -181,13 +200,14 @@ class ARDRegression(BaseTransformer):
181
200
  args=init_args,
182
201
  klass=sklearn.linear_model.ARDRegression
183
202
  )
184
- self._sklearn_object = sklearn.linear_model.ARDRegression(
203
+ self._sklearn_object: Any = sklearn.linear_model.ARDRegression(
185
204
  **cleaned_up_init_args,
186
205
  )
187
206
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
188
207
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
189
208
  self._snowpark_cols: Optional[List[str]] = self.input_cols
190
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
209
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
210
+ self._autogenerated = True
191
211
 
192
212
  def _get_rand_id(self) -> str:
193
213
  """
@@ -198,24 +218,6 @@ class ARDRegression(BaseTransformer):
198
218
  """
199
219
  return str(uuid4()).replace("-", "_").upper()
200
220
 
201
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
202
- """
203
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
204
-
205
- Args:
206
- dataset: Input dataset.
207
- """
208
- if not self.input_cols:
209
- cols = [
210
- c for c in dataset.columns
211
- if c not in self.get_label_cols() and c != self.sample_weight_col
212
- ]
213
- self.set_input_cols(input_cols=cols)
214
-
215
- if not self.output_cols:
216
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
217
- self.set_output_cols(output_cols=cols)
218
-
219
221
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ARDRegression":
220
222
  """
221
223
  Input columns setter.
@@ -261,54 +263,48 @@ class ARDRegression(BaseTransformer):
261
263
  self
262
264
  """
263
265
  self._infer_input_output_cols(dataset)
264
- if isinstance(dataset, pd.DataFrame):
265
- assert self._sklearn_object is not None # keep mypy happy
266
- self._sklearn_object = self._handlers.fit_pandas(
267
- dataset,
268
- self._sklearn_object,
269
- self.input_cols,
270
- self.label_cols,
271
- self.sample_weight_col
272
- )
273
- elif isinstance(dataset, DataFrame):
274
- self._fit_snowpark(dataset)
275
- else:
276
- raise TypeError(
277
- f"Unexpected dataset type: {type(dataset)}."
278
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
279
- )
266
+ if isinstance(dataset, DataFrame):
267
+ session = dataset._session
268
+ assert session is not None # keep mypy happy
269
+ # Validate that key package version in user workspace are supported in snowflake conda channel
270
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
271
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
272
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
273
+
274
+ # Specify input columns so column pruning will be enforced
275
+ selected_cols = self._get_active_columns()
276
+ if len(selected_cols) > 0:
277
+ dataset = dataset.select(selected_cols)
278
+
279
+ self._snowpark_cols = dataset.select(self.input_cols).columns
280
+
281
+ # If we are already in a stored procedure, no need to kick off another one.
282
+ if SNOWML_SPROC_ENV in os.environ:
283
+ statement_params = telemetry.get_function_usage_statement_params(
284
+ project=_PROJECT,
285
+ subproject=_SUBPROJECT,
286
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ARDRegression.__class__.__name__),
287
+ api_calls=[Session.call],
288
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
289
+ )
290
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
291
+ pd_df.columns = dataset.columns
292
+ dataset = pd_df
293
+
294
+ model_trainer = ModelTrainerBuilder.build(
295
+ estimator=self._sklearn_object,
296
+ dataset=dataset,
297
+ input_cols=self.input_cols,
298
+ label_cols=self.label_cols,
299
+ sample_weight_col=self.sample_weight_col,
300
+ autogenerated=self._autogenerated,
301
+ subproject=_SUBPROJECT
302
+ )
303
+ self._sklearn_object = model_trainer.train()
280
304
  self._is_fitted = True
281
305
  self._get_model_signatures(dataset)
282
306
  return self
283
307
 
284
- def _fit_snowpark(self, dataset: DataFrame) -> None:
285
- session = dataset._session
286
- assert session is not None # keep mypy happy
287
- # Validate that key package version in user workspace are supported in snowflake conda channel
288
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
289
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
290
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
291
-
292
- # Specify input columns so column pruning will be enforced
293
- selected_cols = self._get_active_columns()
294
- if len(selected_cols) > 0:
295
- dataset = dataset.select(selected_cols)
296
-
297
- estimator = self._sklearn_object
298
- assert estimator is not None # Keep mypy happy
299
-
300
- self._snowpark_cols = dataset.select(self.input_cols).columns
301
-
302
- self._sklearn_object = self._handlers.fit_snowpark(
303
- dataset,
304
- session,
305
- estimator,
306
- ["snowflake-snowpark-python"] + self._get_dependencies(),
307
- self.input_cols,
308
- self.label_cols,
309
- self.sample_weight_col,
310
- )
311
-
312
308
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
313
309
  if self._drop_input_cols:
314
310
  return []
@@ -496,11 +492,6 @@ class ARDRegression(BaseTransformer):
496
492
  subproject=_SUBPROJECT,
497
493
  custom_tags=dict([("autogen", True)]),
498
494
  )
499
- @telemetry.add_stmt_params_to_df(
500
- project=_PROJECT,
501
- subproject=_SUBPROJECT,
502
- custom_tags=dict([("autogen", True)]),
503
- )
504
495
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
505
496
  """Predict using the linear model
506
497
  For more details on this function, see [sklearn.linear_model.ARDRegression.predict]
@@ -554,11 +545,6 @@ class ARDRegression(BaseTransformer):
554
545
  subproject=_SUBPROJECT,
555
546
  custom_tags=dict([("autogen", True)]),
556
547
  )
557
- @telemetry.add_stmt_params_to_df(
558
- project=_PROJECT,
559
- subproject=_SUBPROJECT,
560
- custom_tags=dict([("autogen", True)]),
561
- )
562
548
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
563
549
  """Method not supported for this class.
564
550
 
@@ -615,7 +601,8 @@ class ARDRegression(BaseTransformer):
615
601
  if False:
616
602
  self.fit(dataset)
617
603
  assert self._sklearn_object is not None
618
- return self._sklearn_object.labels_
604
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
605
+ return labels
619
606
  else:
620
607
  raise NotImplementedError
621
608
 
@@ -651,6 +638,7 @@ class ARDRegression(BaseTransformer):
651
638
  output_cols = []
652
639
 
653
640
  # Make sure column names are valid snowflake identifiers.
641
+ assert output_cols is not None # Make MyPy happy
654
642
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
655
643
 
656
644
  return rv
@@ -661,11 +649,6 @@ class ARDRegression(BaseTransformer):
661
649
  subproject=_SUBPROJECT,
662
650
  custom_tags=dict([("autogen", True)]),
663
651
  )
664
- @telemetry.add_stmt_params_to_df(
665
- project=_PROJECT,
666
- subproject=_SUBPROJECT,
667
- custom_tags=dict([("autogen", True)]),
668
- )
669
652
  def predict_proba(
670
653
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
671
654
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -706,11 +689,6 @@ class ARDRegression(BaseTransformer):
706
689
  subproject=_SUBPROJECT,
707
690
  custom_tags=dict([("autogen", True)]),
708
691
  )
709
- @telemetry.add_stmt_params_to_df(
710
- project=_PROJECT,
711
- subproject=_SUBPROJECT,
712
- custom_tags=dict([("autogen", True)]),
713
- )
714
692
  def predict_log_proba(
715
693
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
716
694
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -747,16 +725,6 @@ class ARDRegression(BaseTransformer):
747
725
  return output_df
748
726
 
749
727
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
750
- @telemetry.send_api_usage_telemetry(
751
- project=_PROJECT,
752
- subproject=_SUBPROJECT,
753
- custom_tags=dict([("autogen", True)]),
754
- )
755
- @telemetry.add_stmt_params_to_df(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
728
  def decision_function(
761
729
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
762
730
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -857,11 +825,6 @@ class ARDRegression(BaseTransformer):
857
825
  subproject=_SUBPROJECT,
858
826
  custom_tags=dict([("autogen", True)]),
859
827
  )
860
- @telemetry.add_stmt_params_to_df(
861
- project=_PROJECT,
862
- subproject=_SUBPROJECT,
863
- custom_tags=dict([("autogen", True)]),
864
- )
865
828
  def kneighbors(
866
829
  self,
867
830
  dataset: Union[DataFrame, pd.DataFrame],
@@ -921,18 +884,28 @@ class ARDRegression(BaseTransformer):
921
884
  # For classifier, the type of predict is the same as the type of label
922
885
  if self._sklearn_object._estimator_type == 'classifier':
923
886
  # label columns is the desired type for output
924
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
887
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
925
888
  # rename the output columns
926
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
889
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
927
890
  self._model_signature_dict["predict"] = ModelSignature(inputs,
928
891
  ([] if self._drop_input_cols else inputs)
929
892
  + outputs)
893
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
894
+ # For outlier models, returns -1 for outliers and 1 for inliers.
895
+ # Clusterer returns int64 cluster labels.
896
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
897
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
898
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
899
+ ([] if self._drop_input_cols else inputs)
900
+ + outputs)
901
+
930
902
  # For regressor, the type of predict is float64
931
903
  elif self._sklearn_object._estimator_type == 'regressor':
932
904
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
933
905
  self._model_signature_dict["predict"] = ModelSignature(inputs,
934
906
  ([] if self._drop_input_cols else inputs)
935
907
  + outputs)
908
+
936
909
  for prob_func in PROB_FUNCTIONS:
937
910
  if hasattr(self, prob_func):
938
911
  output_cols_prefix: str = f"{prob_func}_"