snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RandomForestRegressor(BaseTransformer):
57
58
  r"""A random forest regressor
58
59
  For more details on this class, see [sklearn.ensemble.RandomForestRegressor]
@@ -60,6 +61,51 @@ class RandomForestRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -188,35 +234,6 @@ class RandomForestRegressor(BaseTransformer):
188
234
  - If int, then draw `max_samples` samples.
189
235
  - If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
190
236
  `max_samples` should be in the interval `(0.0, 1.0]`.
191
-
192
- input_cols: Optional[Union[str, List[str]]]
193
- A string or list of strings representing column names that contain features.
194
- If this parameter is not specified, all columns in the input DataFrame except
195
- the columns specified by label_cols and sample_weight_col parameters are
196
- considered input columns.
197
-
198
- label_cols: Optional[Union[str, List[str]]]
199
- A string or list of strings representing column names that contain labels.
200
- This is a required param for estimators, as there is no way to infer these
201
- columns. If this parameter is not specified, then object is fitted without
202
- labels (like a transformer).
203
-
204
- output_cols: Optional[Union[str, List[str]]]
205
- A string or list of strings representing column names that will store the
206
- output of predict and transform operations. The length of output_cols must
207
- match the expected number of output columns from the specific estimator or
208
- transformer class used.
209
- If this parameter is not specified, output column names are derived by
210
- adding an OUTPUT_ prefix to the label column names. These inferred output
211
- column names work for estimator's predict() method, but output_cols must
212
- be set explicitly for transformers.
213
-
214
- sample_weight_col: Optional[str]
215
- A string representing the column name containing the sample weights.
216
- This argument is only required when working with weighted datasets.
217
-
218
- drop_input_cols: Optional[bool], default=False
219
- If set, the response of predict(), transform() methods will not contain input columns.
220
237
  """
221
238
 
222
239
  def __init__( # type: ignore[no-untyped-def]
@@ -242,6 +259,7 @@ class RandomForestRegressor(BaseTransformer):
242
259
  input_cols: Optional[Union[str, Iterable[str]]] = None,
243
260
  output_cols: Optional[Union[str, Iterable[str]]] = None,
244
261
  label_cols: Optional[Union[str, Iterable[str]]] = None,
262
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
245
263
  drop_input_cols: Optional[bool] = False,
246
264
  sample_weight_col: Optional[str] = None,
247
265
  ) -> None:
@@ -250,9 +268,10 @@ class RandomForestRegressor(BaseTransformer):
250
268
  self.set_input_cols(input_cols)
251
269
  self.set_output_cols(output_cols)
252
270
  self.set_label_cols(label_cols)
271
+ self.set_passthrough_cols(passthrough_cols)
253
272
  self.set_drop_input_cols(drop_input_cols)
254
273
  self.set_sample_weight_col(sample_weight_col)
255
- deps = set(SklearnWrapperProvider().dependencies)
274
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
256
275
 
257
276
  self._deps = list(deps)
258
277
 
@@ -277,13 +296,14 @@ class RandomForestRegressor(BaseTransformer):
277
296
  args=init_args,
278
297
  klass=sklearn.ensemble.RandomForestRegressor
279
298
  )
280
- self._sklearn_object = sklearn.ensemble.RandomForestRegressor(
299
+ self._sklearn_object: Any = sklearn.ensemble.RandomForestRegressor(
281
300
  **cleaned_up_init_args,
282
301
  )
283
302
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
284
303
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
285
304
  self._snowpark_cols: Optional[List[str]] = self.input_cols
286
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
305
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
306
+ self._autogenerated = True
287
307
 
288
308
  def _get_rand_id(self) -> str:
289
309
  """
@@ -294,24 +314,6 @@ class RandomForestRegressor(BaseTransformer):
294
314
  """
295
315
  return str(uuid4()).replace("-", "_").upper()
296
316
 
297
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
298
- """
299
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
300
-
301
- Args:
302
- dataset: Input dataset.
303
- """
304
- if not self.input_cols:
305
- cols = [
306
- c for c in dataset.columns
307
- if c not in self.get_label_cols() and c != self.sample_weight_col
308
- ]
309
- self.set_input_cols(input_cols=cols)
310
-
311
- if not self.output_cols:
312
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
313
- self.set_output_cols(output_cols=cols)
314
-
315
317
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RandomForestRegressor":
316
318
  """
317
319
  Input columns setter.
@@ -357,54 +359,48 @@ class RandomForestRegressor(BaseTransformer):
357
359
  self
358
360
  """
359
361
  self._infer_input_output_cols(dataset)
360
- if isinstance(dataset, pd.DataFrame):
361
- assert self._sklearn_object is not None # keep mypy happy
362
- self._sklearn_object = self._handlers.fit_pandas(
363
- dataset,
364
- self._sklearn_object,
365
- self.input_cols,
366
- self.label_cols,
367
- self.sample_weight_col
368
- )
369
- elif isinstance(dataset, DataFrame):
370
- self._fit_snowpark(dataset)
371
- else:
372
- raise TypeError(
373
- f"Unexpected dataset type: {type(dataset)}."
374
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
375
- )
362
+ if isinstance(dataset, DataFrame):
363
+ session = dataset._session
364
+ assert session is not None # keep mypy happy
365
+ # Validate that key package version in user workspace are supported in snowflake conda channel
366
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
367
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
368
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
369
+
370
+ # Specify input columns so column pruning will be enforced
371
+ selected_cols = self._get_active_columns()
372
+ if len(selected_cols) > 0:
373
+ dataset = dataset.select(selected_cols)
374
+
375
+ self._snowpark_cols = dataset.select(self.input_cols).columns
376
+
377
+ # If we are already in a stored procedure, no need to kick off another one.
378
+ if SNOWML_SPROC_ENV in os.environ:
379
+ statement_params = telemetry.get_function_usage_statement_params(
380
+ project=_PROJECT,
381
+ subproject=_SUBPROJECT,
382
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestRegressor.__class__.__name__),
383
+ api_calls=[Session.call],
384
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
385
+ )
386
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
387
+ pd_df.columns = dataset.columns
388
+ dataset = pd_df
389
+
390
+ model_trainer = ModelTrainerBuilder.build(
391
+ estimator=self._sklearn_object,
392
+ dataset=dataset,
393
+ input_cols=self.input_cols,
394
+ label_cols=self.label_cols,
395
+ sample_weight_col=self.sample_weight_col,
396
+ autogenerated=self._autogenerated,
397
+ subproject=_SUBPROJECT
398
+ )
399
+ self._sklearn_object = model_trainer.train()
376
400
  self._is_fitted = True
377
401
  self._get_model_signatures(dataset)
378
402
  return self
379
403
 
380
- def _fit_snowpark(self, dataset: DataFrame) -> None:
381
- session = dataset._session
382
- assert session is not None # keep mypy happy
383
- # Validate that key package version in user workspace are supported in snowflake conda channel
384
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
385
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
386
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
387
-
388
- # Specify input columns so column pruning will be enforced
389
- selected_cols = self._get_active_columns()
390
- if len(selected_cols) > 0:
391
- dataset = dataset.select(selected_cols)
392
-
393
- estimator = self._sklearn_object
394
- assert estimator is not None # Keep mypy happy
395
-
396
- self._snowpark_cols = dataset.select(self.input_cols).columns
397
-
398
- self._sklearn_object = self._handlers.fit_snowpark(
399
- dataset,
400
- session,
401
- estimator,
402
- ["snowflake-snowpark-python"] + self._get_dependencies(),
403
- self.input_cols,
404
- self.label_cols,
405
- self.sample_weight_col,
406
- )
407
-
408
404
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
409
405
  if self._drop_input_cols:
410
406
  return []
@@ -592,11 +588,6 @@ class RandomForestRegressor(BaseTransformer):
592
588
  subproject=_SUBPROJECT,
593
589
  custom_tags=dict([("autogen", True)]),
594
590
  )
595
- @telemetry.add_stmt_params_to_df(
596
- project=_PROJECT,
597
- subproject=_SUBPROJECT,
598
- custom_tags=dict([("autogen", True)]),
599
- )
600
591
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
601
592
  """Predict regression target for X
602
593
  For more details on this function, see [sklearn.ensemble.RandomForestRegressor.predict]
@@ -650,11 +641,6 @@ class RandomForestRegressor(BaseTransformer):
650
641
  subproject=_SUBPROJECT,
651
642
  custom_tags=dict([("autogen", True)]),
652
643
  )
653
- @telemetry.add_stmt_params_to_df(
654
- project=_PROJECT,
655
- subproject=_SUBPROJECT,
656
- custom_tags=dict([("autogen", True)]),
657
- )
658
644
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
659
645
  """Method not supported for this class.
660
646
 
@@ -711,7 +697,8 @@ class RandomForestRegressor(BaseTransformer):
711
697
  if False:
712
698
  self.fit(dataset)
713
699
  assert self._sklearn_object is not None
714
- return self._sklearn_object.labels_
700
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
701
+ return labels
715
702
  else:
716
703
  raise NotImplementedError
717
704
 
@@ -747,6 +734,7 @@ class RandomForestRegressor(BaseTransformer):
747
734
  output_cols = []
748
735
 
749
736
  # Make sure column names are valid snowflake identifiers.
737
+ assert output_cols is not None # Make MyPy happy
750
738
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
751
739
 
752
740
  return rv
@@ -757,11 +745,6 @@ class RandomForestRegressor(BaseTransformer):
757
745
  subproject=_SUBPROJECT,
758
746
  custom_tags=dict([("autogen", True)]),
759
747
  )
760
- @telemetry.add_stmt_params_to_df(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
748
  def predict_proba(
766
749
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
767
750
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -802,11 +785,6 @@ class RandomForestRegressor(BaseTransformer):
802
785
  subproject=_SUBPROJECT,
803
786
  custom_tags=dict([("autogen", True)]),
804
787
  )
805
- @telemetry.add_stmt_params_to_df(
806
- project=_PROJECT,
807
- subproject=_SUBPROJECT,
808
- custom_tags=dict([("autogen", True)]),
809
- )
810
788
  def predict_log_proba(
811
789
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
812
790
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -843,16 +821,6 @@ class RandomForestRegressor(BaseTransformer):
843
821
  return output_df
844
822
 
845
823
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
846
- @telemetry.send_api_usage_telemetry(
847
- project=_PROJECT,
848
- subproject=_SUBPROJECT,
849
- custom_tags=dict([("autogen", True)]),
850
- )
851
- @telemetry.add_stmt_params_to_df(
852
- project=_PROJECT,
853
- subproject=_SUBPROJECT,
854
- custom_tags=dict([("autogen", True)]),
855
- )
856
824
  def decision_function(
857
825
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
858
826
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -953,11 +921,6 @@ class RandomForestRegressor(BaseTransformer):
953
921
  subproject=_SUBPROJECT,
954
922
  custom_tags=dict([("autogen", True)]),
955
923
  )
956
- @telemetry.add_stmt_params_to_df(
957
- project=_PROJECT,
958
- subproject=_SUBPROJECT,
959
- custom_tags=dict([("autogen", True)]),
960
- )
961
924
  def kneighbors(
962
925
  self,
963
926
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1017,18 +980,28 @@ class RandomForestRegressor(BaseTransformer):
1017
980
  # For classifier, the type of predict is the same as the type of label
1018
981
  if self._sklearn_object._estimator_type == 'classifier':
1019
982
  # label columns is the desired type for output
1020
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
983
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1021
984
  # rename the output columns
1022
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
985
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1023
986
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
987
  ([] if self._drop_input_cols else inputs)
1025
988
  + outputs)
989
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
990
+ # For outlier models, returns -1 for outliers and 1 for inliers.
991
+ # Clusterer returns int64 cluster labels.
992
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
993
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
994
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
995
+ ([] if self._drop_input_cols else inputs)
996
+ + outputs)
997
+
1026
998
  # For regressor, the type of predict is float64
1027
999
  elif self._sklearn_object._estimator_type == 'regressor':
1028
1000
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1029
1001
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1030
1002
  ([] if self._drop_input_cols else inputs)
1031
1003
  + outputs)
1004
+
1032
1005
  for prob_func in PROB_FUNCTIONS:
1033
1006
  if hasattr(self, prob_func):
1034
1007
  output_cols_prefix: str = f"{prob_func}_"