snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RandomForestRegressor(BaseTransformer):
|
57
58
|
r"""A random forest regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.RandomForestRegressor]
|
@@ -60,6 +61,51 @@ class RandomForestRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -188,35 +234,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
188
234
|
- If int, then draw `max_samples` samples.
|
189
235
|
- If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
|
190
236
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
191
|
-
|
192
|
-
input_cols: Optional[Union[str, List[str]]]
|
193
|
-
A string or list of strings representing column names that contain features.
|
194
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
195
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
196
|
-
considered input columns.
|
197
|
-
|
198
|
-
label_cols: Optional[Union[str, List[str]]]
|
199
|
-
A string or list of strings representing column names that contain labels.
|
200
|
-
This is a required param for estimators, as there is no way to infer these
|
201
|
-
columns. If this parameter is not specified, then object is fitted without
|
202
|
-
labels (like a transformer).
|
203
|
-
|
204
|
-
output_cols: Optional[Union[str, List[str]]]
|
205
|
-
A string or list of strings representing column names that will store the
|
206
|
-
output of predict and transform operations. The length of output_cols must
|
207
|
-
match the expected number of output columns from the specific estimator or
|
208
|
-
transformer class used.
|
209
|
-
If this parameter is not specified, output column names are derived by
|
210
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
211
|
-
column names work for estimator's predict() method, but output_cols must
|
212
|
-
be set explicitly for transformers.
|
213
|
-
|
214
|
-
sample_weight_col: Optional[str]
|
215
|
-
A string representing the column name containing the sample weights.
|
216
|
-
This argument is only required when working with weighted datasets.
|
217
|
-
|
218
|
-
drop_input_cols: Optional[bool], default=False
|
219
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
220
237
|
"""
|
221
238
|
|
222
239
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -242,6 +259,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
242
259
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
243
260
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
244
261
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
262
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
245
263
|
drop_input_cols: Optional[bool] = False,
|
246
264
|
sample_weight_col: Optional[str] = None,
|
247
265
|
) -> None:
|
@@ -250,9 +268,10 @@ class RandomForestRegressor(BaseTransformer):
|
|
250
268
|
self.set_input_cols(input_cols)
|
251
269
|
self.set_output_cols(output_cols)
|
252
270
|
self.set_label_cols(label_cols)
|
271
|
+
self.set_passthrough_cols(passthrough_cols)
|
253
272
|
self.set_drop_input_cols(drop_input_cols)
|
254
273
|
self.set_sample_weight_col(sample_weight_col)
|
255
|
-
deps = set(
|
274
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
256
275
|
|
257
276
|
self._deps = list(deps)
|
258
277
|
|
@@ -277,13 +296,14 @@ class RandomForestRegressor(BaseTransformer):
|
|
277
296
|
args=init_args,
|
278
297
|
klass=sklearn.ensemble.RandomForestRegressor
|
279
298
|
)
|
280
|
-
self._sklearn_object = sklearn.ensemble.RandomForestRegressor(
|
299
|
+
self._sklearn_object: Any = sklearn.ensemble.RandomForestRegressor(
|
281
300
|
**cleaned_up_init_args,
|
282
301
|
)
|
283
302
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
284
303
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
285
304
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
286
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
305
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
306
|
+
self._autogenerated = True
|
287
307
|
|
288
308
|
def _get_rand_id(self) -> str:
|
289
309
|
"""
|
@@ -294,24 +314,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
294
314
|
"""
|
295
315
|
return str(uuid4()).replace("-", "_").upper()
|
296
316
|
|
297
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
298
|
-
"""
|
299
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
300
|
-
|
301
|
-
Args:
|
302
|
-
dataset: Input dataset.
|
303
|
-
"""
|
304
|
-
if not self.input_cols:
|
305
|
-
cols = [
|
306
|
-
c for c in dataset.columns
|
307
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
308
|
-
]
|
309
|
-
self.set_input_cols(input_cols=cols)
|
310
|
-
|
311
|
-
if not self.output_cols:
|
312
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
313
|
-
self.set_output_cols(output_cols=cols)
|
314
|
-
|
315
317
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RandomForestRegressor":
|
316
318
|
"""
|
317
319
|
Input columns setter.
|
@@ -357,54 +359,48 @@ class RandomForestRegressor(BaseTransformer):
|
|
357
359
|
self
|
358
360
|
"""
|
359
361
|
self._infer_input_output_cols(dataset)
|
360
|
-
if isinstance(dataset,
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
self.
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
362
|
+
if isinstance(dataset, DataFrame):
|
363
|
+
session = dataset._session
|
364
|
+
assert session is not None # keep mypy happy
|
365
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
366
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
367
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
368
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
369
|
+
|
370
|
+
# Specify input columns so column pruning will be enforced
|
371
|
+
selected_cols = self._get_active_columns()
|
372
|
+
if len(selected_cols) > 0:
|
373
|
+
dataset = dataset.select(selected_cols)
|
374
|
+
|
375
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
376
|
+
|
377
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
378
|
+
if SNOWML_SPROC_ENV in os.environ:
|
379
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
380
|
+
project=_PROJECT,
|
381
|
+
subproject=_SUBPROJECT,
|
382
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestRegressor.__class__.__name__),
|
383
|
+
api_calls=[Session.call],
|
384
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
385
|
+
)
|
386
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
387
|
+
pd_df.columns = dataset.columns
|
388
|
+
dataset = pd_df
|
389
|
+
|
390
|
+
model_trainer = ModelTrainerBuilder.build(
|
391
|
+
estimator=self._sklearn_object,
|
392
|
+
dataset=dataset,
|
393
|
+
input_cols=self.input_cols,
|
394
|
+
label_cols=self.label_cols,
|
395
|
+
sample_weight_col=self.sample_weight_col,
|
396
|
+
autogenerated=self._autogenerated,
|
397
|
+
subproject=_SUBPROJECT
|
398
|
+
)
|
399
|
+
self._sklearn_object = model_trainer.train()
|
376
400
|
self._is_fitted = True
|
377
401
|
self._get_model_signatures(dataset)
|
378
402
|
return self
|
379
403
|
|
380
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
381
|
-
session = dataset._session
|
382
|
-
assert session is not None # keep mypy happy
|
383
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
384
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
385
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
386
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
387
|
-
|
388
|
-
# Specify input columns so column pruning will be enforced
|
389
|
-
selected_cols = self._get_active_columns()
|
390
|
-
if len(selected_cols) > 0:
|
391
|
-
dataset = dataset.select(selected_cols)
|
392
|
-
|
393
|
-
estimator = self._sklearn_object
|
394
|
-
assert estimator is not None # Keep mypy happy
|
395
|
-
|
396
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
397
|
-
|
398
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
399
|
-
dataset,
|
400
|
-
session,
|
401
|
-
estimator,
|
402
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
403
|
-
self.input_cols,
|
404
|
-
self.label_cols,
|
405
|
-
self.sample_weight_col,
|
406
|
-
)
|
407
|
-
|
408
404
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
409
405
|
if self._drop_input_cols:
|
410
406
|
return []
|
@@ -592,11 +588,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
592
588
|
subproject=_SUBPROJECT,
|
593
589
|
custom_tags=dict([("autogen", True)]),
|
594
590
|
)
|
595
|
-
@telemetry.add_stmt_params_to_df(
|
596
|
-
project=_PROJECT,
|
597
|
-
subproject=_SUBPROJECT,
|
598
|
-
custom_tags=dict([("autogen", True)]),
|
599
|
-
)
|
600
591
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
601
592
|
"""Predict regression target for X
|
602
593
|
For more details on this function, see [sklearn.ensemble.RandomForestRegressor.predict]
|
@@ -650,11 +641,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
650
641
|
subproject=_SUBPROJECT,
|
651
642
|
custom_tags=dict([("autogen", True)]),
|
652
643
|
)
|
653
|
-
@telemetry.add_stmt_params_to_df(
|
654
|
-
project=_PROJECT,
|
655
|
-
subproject=_SUBPROJECT,
|
656
|
-
custom_tags=dict([("autogen", True)]),
|
657
|
-
)
|
658
644
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
659
645
|
"""Method not supported for this class.
|
660
646
|
|
@@ -711,7 +697,8 @@ class RandomForestRegressor(BaseTransformer):
|
|
711
697
|
if False:
|
712
698
|
self.fit(dataset)
|
713
699
|
assert self._sklearn_object is not None
|
714
|
-
|
700
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
701
|
+
return labels
|
715
702
|
else:
|
716
703
|
raise NotImplementedError
|
717
704
|
|
@@ -747,6 +734,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
747
734
|
output_cols = []
|
748
735
|
|
749
736
|
# Make sure column names are valid snowflake identifiers.
|
737
|
+
assert output_cols is not None # Make MyPy happy
|
750
738
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
751
739
|
|
752
740
|
return rv
|
@@ -757,11 +745,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
757
745
|
subproject=_SUBPROJECT,
|
758
746
|
custom_tags=dict([("autogen", True)]),
|
759
747
|
)
|
760
|
-
@telemetry.add_stmt_params_to_df(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
748
|
def predict_proba(
|
766
749
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
767
750
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -802,11 +785,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
802
785
|
subproject=_SUBPROJECT,
|
803
786
|
custom_tags=dict([("autogen", True)]),
|
804
787
|
)
|
805
|
-
@telemetry.add_stmt_params_to_df(
|
806
|
-
project=_PROJECT,
|
807
|
-
subproject=_SUBPROJECT,
|
808
|
-
custom_tags=dict([("autogen", True)]),
|
809
|
-
)
|
810
788
|
def predict_log_proba(
|
811
789
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
812
790
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,16 +821,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
843
821
|
return output_df
|
844
822
|
|
845
823
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
846
|
-
@telemetry.send_api_usage_telemetry(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
824
|
def decision_function(
|
857
825
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
858
826
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -953,11 +921,6 @@ class RandomForestRegressor(BaseTransformer):
|
|
953
921
|
subproject=_SUBPROJECT,
|
954
922
|
custom_tags=dict([("autogen", True)]),
|
955
923
|
)
|
956
|
-
@telemetry.add_stmt_params_to_df(
|
957
|
-
project=_PROJECT,
|
958
|
-
subproject=_SUBPROJECT,
|
959
|
-
custom_tags=dict([("autogen", True)]),
|
960
|
-
)
|
961
924
|
def kneighbors(
|
962
925
|
self,
|
963
926
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1017,18 +980,28 @@ class RandomForestRegressor(BaseTransformer):
|
|
1017
980
|
# For classifier, the type of predict is the same as the type of label
|
1018
981
|
if self._sklearn_object._estimator_type == 'classifier':
|
1019
982
|
# label columns is the desired type for output
|
1020
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
983
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1021
984
|
# rename the output columns
|
1022
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
985
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1023
986
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1024
987
|
([] if self._drop_input_cols else inputs)
|
1025
988
|
+ outputs)
|
989
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
990
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
991
|
+
# Clusterer returns int64 cluster labels.
|
992
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
993
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
994
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
995
|
+
([] if self._drop_input_cols else inputs)
|
996
|
+
+ outputs)
|
997
|
+
|
1026
998
|
# For regressor, the type of predict is float64
|
1027
999
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1028
1000
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1029
1001
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1030
1002
|
([] if self._drop_input_cols else inputs)
|
1031
1003
|
+ outputs)
|
1004
|
+
|
1032
1005
|
for prob_func in PROB_FUNCTIONS:
|
1033
1006
|
if hasattr(self, prob_func):
|
1034
1007
|
output_cols_prefix: str = f"{prob_func}_"
|