snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.calibration".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class CalibratedClassifierCV(BaseTransformer):
57
58
  r"""Probability calibration with isotonic regression or logistic regression
58
59
  For more details on this class, see [sklearn.calibration.CalibratedClassifierCV]
@@ -60,6 +61,51 @@ class CalibratedClassifierCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: estimator instance, default=None
64
110
  The classifier whose output need to be calibrated to provide more
65
111
  accurate `predict_proba` outputs. The default classifier is
@@ -121,35 +167,6 @@ class CalibratedClassifierCV(BaseTransformer):
121
167
 
122
168
  base_estimator: estimator instance
123
169
  This parameter is deprecated. Use `estimator` instead.
124
-
125
- input_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that contain features.
127
- If this parameter is not specified, all columns in the input DataFrame except
128
- the columns specified by label_cols and sample_weight_col parameters are
129
- considered input columns.
130
-
131
- label_cols: Optional[Union[str, List[str]]]
132
- A string or list of strings representing column names that contain labels.
133
- This is a required param for estimators, as there is no way to infer these
134
- columns. If this parameter is not specified, then object is fitted without
135
- labels (like a transformer).
136
-
137
- output_cols: Optional[Union[str, List[str]]]
138
- A string or list of strings representing column names that will store the
139
- output of predict and transform operations. The length of output_cols must
140
- match the expected number of output columns from the specific estimator or
141
- transformer class used.
142
- If this parameter is not specified, output column names are derived by
143
- adding an OUTPUT_ prefix to the label column names. These inferred output
144
- column names work for estimator's predict() method, but output_cols must
145
- be set explicitly for transformers.
146
-
147
- sample_weight_col: Optional[str]
148
- A string representing the column name containing the sample weights.
149
- This argument is only required when working with weighted datasets.
150
-
151
- drop_input_cols: Optional[bool], default=False
152
- If set, the response of predict(), transform() methods will not contain input columns.
153
170
  """
154
171
 
155
172
  def __init__( # type: ignore[no-untyped-def]
@@ -164,6 +181,7 @@ class CalibratedClassifierCV(BaseTransformer):
164
181
  input_cols: Optional[Union[str, Iterable[str]]] = None,
165
182
  output_cols: Optional[Union[str, Iterable[str]]] = None,
166
183
  label_cols: Optional[Union[str, Iterable[str]]] = None,
184
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
167
185
  drop_input_cols: Optional[bool] = False,
168
186
  sample_weight_col: Optional[str] = None,
169
187
  ) -> None:
@@ -172,9 +190,10 @@ class CalibratedClassifierCV(BaseTransformer):
172
190
  self.set_input_cols(input_cols)
173
191
  self.set_output_cols(output_cols)
174
192
  self.set_label_cols(label_cols)
193
+ self.set_passthrough_cols(passthrough_cols)
175
194
  self.set_drop_input_cols(drop_input_cols)
176
195
  self.set_sample_weight_col(sample_weight_col)
177
- deps = set(SklearnWrapperProvider().dependencies)
196
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
178
197
  deps = deps | gather_dependencies(estimator)
179
198
  deps = deps | gather_dependencies(base_estimator)
180
199
  self._deps = list(deps)
@@ -190,13 +209,14 @@ class CalibratedClassifierCV(BaseTransformer):
190
209
  args=init_args,
191
210
  klass=sklearn.calibration.CalibratedClassifierCV
192
211
  )
193
- self._sklearn_object = sklearn.calibration.CalibratedClassifierCV(
212
+ self._sklearn_object: Any = sklearn.calibration.CalibratedClassifierCV(
194
213
  **cleaned_up_init_args,
195
214
  )
196
215
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
197
216
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
198
217
  self._snowpark_cols: Optional[List[str]] = self.input_cols
199
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=CalibratedClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
218
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=CalibratedClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
219
+ self._autogenerated = True
200
220
 
201
221
  def _get_rand_id(self) -> str:
202
222
  """
@@ -207,24 +227,6 @@ class CalibratedClassifierCV(BaseTransformer):
207
227
  """
208
228
  return str(uuid4()).replace("-", "_").upper()
209
229
 
210
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
211
- """
212
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
213
-
214
- Args:
215
- dataset: Input dataset.
216
- """
217
- if not self.input_cols:
218
- cols = [
219
- c for c in dataset.columns
220
- if c not in self.get_label_cols() and c != self.sample_weight_col
221
- ]
222
- self.set_input_cols(input_cols=cols)
223
-
224
- if not self.output_cols:
225
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
226
- self.set_output_cols(output_cols=cols)
227
-
228
230
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "CalibratedClassifierCV":
229
231
  """
230
232
  Input columns setter.
@@ -270,54 +272,48 @@ class CalibratedClassifierCV(BaseTransformer):
270
272
  self
271
273
  """
272
274
  self._infer_input_output_cols(dataset)
273
- if isinstance(dataset, pd.DataFrame):
274
- assert self._sklearn_object is not None # keep mypy happy
275
- self._sklearn_object = self._handlers.fit_pandas(
276
- dataset,
277
- self._sklearn_object,
278
- self.input_cols,
279
- self.label_cols,
280
- self.sample_weight_col
281
- )
282
- elif isinstance(dataset, DataFrame):
283
- self._fit_snowpark(dataset)
284
- else:
285
- raise TypeError(
286
- f"Unexpected dataset type: {type(dataset)}."
287
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
288
- )
275
+ if isinstance(dataset, DataFrame):
276
+ session = dataset._session
277
+ assert session is not None # keep mypy happy
278
+ # Validate that key package version in user workspace are supported in snowflake conda channel
279
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
280
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
281
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
282
+
283
+ # Specify input columns so column pruning will be enforced
284
+ selected_cols = self._get_active_columns()
285
+ if len(selected_cols) > 0:
286
+ dataset = dataset.select(selected_cols)
287
+
288
+ self._snowpark_cols = dataset.select(self.input_cols).columns
289
+
290
+ # If we are already in a stored procedure, no need to kick off another one.
291
+ if SNOWML_SPROC_ENV in os.environ:
292
+ statement_params = telemetry.get_function_usage_statement_params(
293
+ project=_PROJECT,
294
+ subproject=_SUBPROJECT,
295
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), CalibratedClassifierCV.__class__.__name__),
296
+ api_calls=[Session.call],
297
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
298
+ )
299
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
300
+ pd_df.columns = dataset.columns
301
+ dataset = pd_df
302
+
303
+ model_trainer = ModelTrainerBuilder.build(
304
+ estimator=self._sklearn_object,
305
+ dataset=dataset,
306
+ input_cols=self.input_cols,
307
+ label_cols=self.label_cols,
308
+ sample_weight_col=self.sample_weight_col,
309
+ autogenerated=self._autogenerated,
310
+ subproject=_SUBPROJECT
311
+ )
312
+ self._sklearn_object = model_trainer.train()
289
313
  self._is_fitted = True
290
314
  self._get_model_signatures(dataset)
291
315
  return self
292
316
 
293
- def _fit_snowpark(self, dataset: DataFrame) -> None:
294
- session = dataset._session
295
- assert session is not None # keep mypy happy
296
- # Validate that key package version in user workspace are supported in snowflake conda channel
297
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
298
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
299
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
300
-
301
- # Specify input columns so column pruning will be enforced
302
- selected_cols = self._get_active_columns()
303
- if len(selected_cols) > 0:
304
- dataset = dataset.select(selected_cols)
305
-
306
- estimator = self._sklearn_object
307
- assert estimator is not None # Keep mypy happy
308
-
309
- self._snowpark_cols = dataset.select(self.input_cols).columns
310
-
311
- self._sklearn_object = self._handlers.fit_snowpark(
312
- dataset,
313
- session,
314
- estimator,
315
- ["snowflake-snowpark-python"] + self._get_dependencies(),
316
- self.input_cols,
317
- self.label_cols,
318
- self.sample_weight_col,
319
- )
320
-
321
317
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
322
318
  if self._drop_input_cols:
323
319
  return []
@@ -505,11 +501,6 @@ class CalibratedClassifierCV(BaseTransformer):
505
501
  subproject=_SUBPROJECT,
506
502
  custom_tags=dict([("autogen", True)]),
507
503
  )
508
- @telemetry.add_stmt_params_to_df(
509
- project=_PROJECT,
510
- subproject=_SUBPROJECT,
511
- custom_tags=dict([("autogen", True)]),
512
- )
513
504
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
514
505
  """Predict the target of new samples
515
506
  For more details on this function, see [sklearn.calibration.CalibratedClassifierCV.predict]
@@ -563,11 +554,6 @@ class CalibratedClassifierCV(BaseTransformer):
563
554
  subproject=_SUBPROJECT,
564
555
  custom_tags=dict([("autogen", True)]),
565
556
  )
566
- @telemetry.add_stmt_params_to_df(
567
- project=_PROJECT,
568
- subproject=_SUBPROJECT,
569
- custom_tags=dict([("autogen", True)]),
570
- )
571
557
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
572
558
  """Method not supported for this class.
573
559
 
@@ -624,7 +610,8 @@ class CalibratedClassifierCV(BaseTransformer):
624
610
  if False:
625
611
  self.fit(dataset)
626
612
  assert self._sklearn_object is not None
627
- return self._sklearn_object.labels_
613
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
614
+ return labels
628
615
  else:
629
616
  raise NotImplementedError
630
617
 
@@ -660,6 +647,7 @@ class CalibratedClassifierCV(BaseTransformer):
660
647
  output_cols = []
661
648
 
662
649
  # Make sure column names are valid snowflake identifiers.
650
+ assert output_cols is not None # Make MyPy happy
663
651
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
664
652
 
665
653
  return rv
@@ -670,11 +658,6 @@ class CalibratedClassifierCV(BaseTransformer):
670
658
  subproject=_SUBPROJECT,
671
659
  custom_tags=dict([("autogen", True)]),
672
660
  )
673
- @telemetry.add_stmt_params_to_df(
674
- project=_PROJECT,
675
- subproject=_SUBPROJECT,
676
- custom_tags=dict([("autogen", True)]),
677
- )
678
661
  def predict_proba(
679
662
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
680
663
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -717,11 +700,6 @@ class CalibratedClassifierCV(BaseTransformer):
717
700
  subproject=_SUBPROJECT,
718
701
  custom_tags=dict([("autogen", True)]),
719
702
  )
720
- @telemetry.add_stmt_params_to_df(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
703
  def predict_log_proba(
726
704
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
727
705
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -760,16 +738,6 @@ class CalibratedClassifierCV(BaseTransformer):
760
738
  return output_df
761
739
 
762
740
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
763
- @telemetry.send_api_usage_telemetry(
764
- project=_PROJECT,
765
- subproject=_SUBPROJECT,
766
- custom_tags=dict([("autogen", True)]),
767
- )
768
- @telemetry.add_stmt_params_to_df(
769
- project=_PROJECT,
770
- subproject=_SUBPROJECT,
771
- custom_tags=dict([("autogen", True)]),
772
- )
773
741
  def decision_function(
774
742
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
775
743
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -870,11 +838,6 @@ class CalibratedClassifierCV(BaseTransformer):
870
838
  subproject=_SUBPROJECT,
871
839
  custom_tags=dict([("autogen", True)]),
872
840
  )
873
- @telemetry.add_stmt_params_to_df(
874
- project=_PROJECT,
875
- subproject=_SUBPROJECT,
876
- custom_tags=dict([("autogen", True)]),
877
- )
878
841
  def kneighbors(
879
842
  self,
880
843
  dataset: Union[DataFrame, pd.DataFrame],
@@ -934,18 +897,28 @@ class CalibratedClassifierCV(BaseTransformer):
934
897
  # For classifier, the type of predict is the same as the type of label
935
898
  if self._sklearn_object._estimator_type == 'classifier':
936
899
  # label columns is the desired type for output
937
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
900
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
938
901
  # rename the output columns
939
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
902
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
940
903
  self._model_signature_dict["predict"] = ModelSignature(inputs,
941
904
  ([] if self._drop_input_cols else inputs)
942
905
  + outputs)
906
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
907
+ # For outlier models, returns -1 for outliers and 1 for inliers.
908
+ # Clusterer returns int64 cluster labels.
909
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
910
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
911
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
912
+ ([] if self._drop_input_cols else inputs)
913
+ + outputs)
914
+
943
915
  # For regressor, the type of predict is float64
944
916
  elif self._sklearn_object._estimator_type == 'regressor':
945
917
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
946
918
  self._model_signature_dict["predict"] = ModelSignature(inputs,
947
919
  ([] if self._drop_input_cols else inputs)
948
920
  + outputs)
921
+
949
922
  for prob_func in PROB_FUNCTIONS:
950
923
  if hasattr(self, prob_func):
951
924
  output_cols_prefix: str = f"{prob_func}_"