snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.calibration".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class CalibratedClassifierCV(BaseTransformer):
|
57
58
|
r"""Probability calibration with isotonic regression or logistic regression
|
58
59
|
For more details on this class, see [sklearn.calibration.CalibratedClassifierCV]
|
@@ -60,6 +61,51 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: estimator instance, default=None
|
64
110
|
The classifier whose output need to be calibrated to provide more
|
65
111
|
accurate `predict_proba` outputs. The default classifier is
|
@@ -121,35 +167,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
121
167
|
|
122
168
|
base_estimator: estimator instance
|
123
169
|
This parameter is deprecated. Use `estimator` instead.
|
124
|
-
|
125
|
-
input_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that contain features.
|
127
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
128
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
129
|
-
considered input columns.
|
130
|
-
|
131
|
-
label_cols: Optional[Union[str, List[str]]]
|
132
|
-
A string or list of strings representing column names that contain labels.
|
133
|
-
This is a required param for estimators, as there is no way to infer these
|
134
|
-
columns. If this parameter is not specified, then object is fitted without
|
135
|
-
labels (like a transformer).
|
136
|
-
|
137
|
-
output_cols: Optional[Union[str, List[str]]]
|
138
|
-
A string or list of strings representing column names that will store the
|
139
|
-
output of predict and transform operations. The length of output_cols must
|
140
|
-
match the expected number of output columns from the specific estimator or
|
141
|
-
transformer class used.
|
142
|
-
If this parameter is not specified, output column names are derived by
|
143
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
144
|
-
column names work for estimator's predict() method, but output_cols must
|
145
|
-
be set explicitly for transformers.
|
146
|
-
|
147
|
-
sample_weight_col: Optional[str]
|
148
|
-
A string representing the column name containing the sample weights.
|
149
|
-
This argument is only required when working with weighted datasets.
|
150
|
-
|
151
|
-
drop_input_cols: Optional[bool], default=False
|
152
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
153
170
|
"""
|
154
171
|
|
155
172
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -164,6 +181,7 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
164
181
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
165
182
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
166
183
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
167
185
|
drop_input_cols: Optional[bool] = False,
|
168
186
|
sample_weight_col: Optional[str] = None,
|
169
187
|
) -> None:
|
@@ -172,9 +190,10 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
172
190
|
self.set_input_cols(input_cols)
|
173
191
|
self.set_output_cols(output_cols)
|
174
192
|
self.set_label_cols(label_cols)
|
193
|
+
self.set_passthrough_cols(passthrough_cols)
|
175
194
|
self.set_drop_input_cols(drop_input_cols)
|
176
195
|
self.set_sample_weight_col(sample_weight_col)
|
177
|
-
deps = set(
|
196
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
178
197
|
deps = deps | gather_dependencies(estimator)
|
179
198
|
deps = deps | gather_dependencies(base_estimator)
|
180
199
|
self._deps = list(deps)
|
@@ -190,13 +209,14 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
190
209
|
args=init_args,
|
191
210
|
klass=sklearn.calibration.CalibratedClassifierCV
|
192
211
|
)
|
193
|
-
self._sklearn_object = sklearn.calibration.CalibratedClassifierCV(
|
212
|
+
self._sklearn_object: Any = sklearn.calibration.CalibratedClassifierCV(
|
194
213
|
**cleaned_up_init_args,
|
195
214
|
)
|
196
215
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
197
216
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
198
217
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
199
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=CalibratedClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
218
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=CalibratedClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
219
|
+
self._autogenerated = True
|
200
220
|
|
201
221
|
def _get_rand_id(self) -> str:
|
202
222
|
"""
|
@@ -207,24 +227,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
207
227
|
"""
|
208
228
|
return str(uuid4()).replace("-", "_").upper()
|
209
229
|
|
210
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
211
|
-
"""
|
212
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
213
|
-
|
214
|
-
Args:
|
215
|
-
dataset: Input dataset.
|
216
|
-
"""
|
217
|
-
if not self.input_cols:
|
218
|
-
cols = [
|
219
|
-
c for c in dataset.columns
|
220
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
221
|
-
]
|
222
|
-
self.set_input_cols(input_cols=cols)
|
223
|
-
|
224
|
-
if not self.output_cols:
|
225
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
226
|
-
self.set_output_cols(output_cols=cols)
|
227
|
-
|
228
230
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "CalibratedClassifierCV":
|
229
231
|
"""
|
230
232
|
Input columns setter.
|
@@ -270,54 +272,48 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
270
272
|
self
|
271
273
|
"""
|
272
274
|
self._infer_input_output_cols(dataset)
|
273
|
-
if isinstance(dataset,
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
self.
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
275
|
+
if isinstance(dataset, DataFrame):
|
276
|
+
session = dataset._session
|
277
|
+
assert session is not None # keep mypy happy
|
278
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
279
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
280
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
281
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
282
|
+
|
283
|
+
# Specify input columns so column pruning will be enforced
|
284
|
+
selected_cols = self._get_active_columns()
|
285
|
+
if len(selected_cols) > 0:
|
286
|
+
dataset = dataset.select(selected_cols)
|
287
|
+
|
288
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
289
|
+
|
290
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
291
|
+
if SNOWML_SPROC_ENV in os.environ:
|
292
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
293
|
+
project=_PROJECT,
|
294
|
+
subproject=_SUBPROJECT,
|
295
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), CalibratedClassifierCV.__class__.__name__),
|
296
|
+
api_calls=[Session.call],
|
297
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
298
|
+
)
|
299
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
300
|
+
pd_df.columns = dataset.columns
|
301
|
+
dataset = pd_df
|
302
|
+
|
303
|
+
model_trainer = ModelTrainerBuilder.build(
|
304
|
+
estimator=self._sklearn_object,
|
305
|
+
dataset=dataset,
|
306
|
+
input_cols=self.input_cols,
|
307
|
+
label_cols=self.label_cols,
|
308
|
+
sample_weight_col=self.sample_weight_col,
|
309
|
+
autogenerated=self._autogenerated,
|
310
|
+
subproject=_SUBPROJECT
|
311
|
+
)
|
312
|
+
self._sklearn_object = model_trainer.train()
|
289
313
|
self._is_fitted = True
|
290
314
|
self._get_model_signatures(dataset)
|
291
315
|
return self
|
292
316
|
|
293
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
294
|
-
session = dataset._session
|
295
|
-
assert session is not None # keep mypy happy
|
296
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
297
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
298
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
299
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
300
|
-
|
301
|
-
# Specify input columns so column pruning will be enforced
|
302
|
-
selected_cols = self._get_active_columns()
|
303
|
-
if len(selected_cols) > 0:
|
304
|
-
dataset = dataset.select(selected_cols)
|
305
|
-
|
306
|
-
estimator = self._sklearn_object
|
307
|
-
assert estimator is not None # Keep mypy happy
|
308
|
-
|
309
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
310
|
-
|
311
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
312
|
-
dataset,
|
313
|
-
session,
|
314
|
-
estimator,
|
315
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
316
|
-
self.input_cols,
|
317
|
-
self.label_cols,
|
318
|
-
self.sample_weight_col,
|
319
|
-
)
|
320
|
-
|
321
317
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
322
318
|
if self._drop_input_cols:
|
323
319
|
return []
|
@@ -505,11 +501,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
505
501
|
subproject=_SUBPROJECT,
|
506
502
|
custom_tags=dict([("autogen", True)]),
|
507
503
|
)
|
508
|
-
@telemetry.add_stmt_params_to_df(
|
509
|
-
project=_PROJECT,
|
510
|
-
subproject=_SUBPROJECT,
|
511
|
-
custom_tags=dict([("autogen", True)]),
|
512
|
-
)
|
513
504
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
514
505
|
"""Predict the target of new samples
|
515
506
|
For more details on this function, see [sklearn.calibration.CalibratedClassifierCV.predict]
|
@@ -563,11 +554,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
563
554
|
subproject=_SUBPROJECT,
|
564
555
|
custom_tags=dict([("autogen", True)]),
|
565
556
|
)
|
566
|
-
@telemetry.add_stmt_params_to_df(
|
567
|
-
project=_PROJECT,
|
568
|
-
subproject=_SUBPROJECT,
|
569
|
-
custom_tags=dict([("autogen", True)]),
|
570
|
-
)
|
571
557
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
572
558
|
"""Method not supported for this class.
|
573
559
|
|
@@ -624,7 +610,8 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
624
610
|
if False:
|
625
611
|
self.fit(dataset)
|
626
612
|
assert self._sklearn_object is not None
|
627
|
-
|
613
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
614
|
+
return labels
|
628
615
|
else:
|
629
616
|
raise NotImplementedError
|
630
617
|
|
@@ -660,6 +647,7 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
660
647
|
output_cols = []
|
661
648
|
|
662
649
|
# Make sure column names are valid snowflake identifiers.
|
650
|
+
assert output_cols is not None # Make MyPy happy
|
663
651
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
664
652
|
|
665
653
|
return rv
|
@@ -670,11 +658,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
670
658
|
subproject=_SUBPROJECT,
|
671
659
|
custom_tags=dict([("autogen", True)]),
|
672
660
|
)
|
673
|
-
@telemetry.add_stmt_params_to_df(
|
674
|
-
project=_PROJECT,
|
675
|
-
subproject=_SUBPROJECT,
|
676
|
-
custom_tags=dict([("autogen", True)]),
|
677
|
-
)
|
678
661
|
def predict_proba(
|
679
662
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
680
663
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -717,11 +700,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
717
700
|
subproject=_SUBPROJECT,
|
718
701
|
custom_tags=dict([("autogen", True)]),
|
719
702
|
)
|
720
|
-
@telemetry.add_stmt_params_to_df(
|
721
|
-
project=_PROJECT,
|
722
|
-
subproject=_SUBPROJECT,
|
723
|
-
custom_tags=dict([("autogen", True)]),
|
724
|
-
)
|
725
703
|
def predict_log_proba(
|
726
704
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
727
705
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -760,16 +738,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
760
738
|
return output_df
|
761
739
|
|
762
740
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
763
|
-
@telemetry.send_api_usage_telemetry(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
|
-
@telemetry.add_stmt_params_to_df(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
741
|
def decision_function(
|
774
742
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
775
743
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -870,11 +838,6 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
870
838
|
subproject=_SUBPROJECT,
|
871
839
|
custom_tags=dict([("autogen", True)]),
|
872
840
|
)
|
873
|
-
@telemetry.add_stmt_params_to_df(
|
874
|
-
project=_PROJECT,
|
875
|
-
subproject=_SUBPROJECT,
|
876
|
-
custom_tags=dict([("autogen", True)]),
|
877
|
-
)
|
878
841
|
def kneighbors(
|
879
842
|
self,
|
880
843
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -934,18 +897,28 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
934
897
|
# For classifier, the type of predict is the same as the type of label
|
935
898
|
if self._sklearn_object._estimator_type == 'classifier':
|
936
899
|
# label columns is the desired type for output
|
937
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
900
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
938
901
|
# rename the output columns
|
939
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
902
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
940
903
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
941
904
|
([] if self._drop_input_cols else inputs)
|
942
905
|
+ outputs)
|
906
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
907
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
908
|
+
# Clusterer returns int64 cluster labels.
|
909
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
910
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
911
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
912
|
+
([] if self._drop_input_cols else inputs)
|
913
|
+
+ outputs)
|
914
|
+
|
943
915
|
# For regressor, the type of predict is float64
|
944
916
|
elif self._sklearn_object._estimator_type == 'regressor':
|
945
917
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
946
918
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
947
919
|
([] if self._drop_input_cols else inputs)
|
948
920
|
+ outputs)
|
921
|
+
|
949
922
|
for prob_func in PROB_FUNCTIONS:
|
950
923
|
if hasattr(self, prob_func):
|
951
924
|
output_cols_prefix: str = f"{prob_func}_"
|