snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RBFSampler(BaseTransformer):
57
58
  r"""Approximate a RBF kernel feature map using random Fourier features
58
59
  For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
@@ -60,49 +61,63 @@ class RBFSampler(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- gamma: 'scale' or float, default=1.0
64
- Parameter of RBF kernel: exp(-gamma * x^2).
65
- If ``gamma='scale'`` is passed then it uses
66
- 1 / (n_features * X.var()) as value of gamma.
67
-
68
- n_components: int, default=100
69
- Number of Monte Carlo samples per original feature.
70
- Equals the dimensionality of the computed feature space.
71
-
72
- random_state: int, RandomState instance or None, default=None
73
- Pseudo-random number generator to control the generation of the random
74
- weights and random offset when fitting the training data.
75
- Pass an int for reproducible output across multiple function calls.
76
- See :term:`Glossary <random_state>`.
77
64
 
78
65
  input_cols: Optional[Union[str, List[str]]]
79
66
  A string or list of strings representing column names that contain features.
80
67
  If this parameter is not specified, all columns in the input DataFrame except
81
- the columns specified by label_cols and sample_weight_col parameters are
82
- considered input columns.
83
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
84
72
  label_cols: Optional[Union[str, List[str]]]
85
- A string or list of strings representing column names that contain labels.
86
- This is a required param for estimators, as there is no way to infer these
87
- columns. If this parameter is not specified, then object is fitted without
88
- labels (like a transformer).
89
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
90
75
  output_cols: Optional[Union[str, List[str]]]
91
76
  A string or list of strings representing column names that will store the
92
77
  output of predict and transform operations. The length of output_cols must
93
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
94
79
  transformer class used.
95
- If this parameter is not specified, output column names are derived by
96
- adding an OUTPUT_ prefix to the label column names. These inferred output
97
- column names work for estimator's predict() method, but output_cols must
98
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
99
89
 
100
90
  sample_weight_col: Optional[str]
101
91
  A string representing the column name containing the sample weights.
102
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
103
 
104
104
  drop_input_cols: Optional[bool], default=False
105
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ gamma: 'scale' or float, default=1.0
108
+ Parameter of RBF kernel: exp(-gamma * x^2).
109
+ If ``gamma='scale'`` is passed then it uses
110
+ 1 / (n_features * X.var()) as value of gamma.
111
+
112
+ n_components: int, default=100
113
+ Number of Monte Carlo samples per original feature.
114
+ Equals the dimensionality of the computed feature space.
115
+
116
+ random_state: int, RandomState instance or None, default=None
117
+ Pseudo-random number generator to control the generation of the random
118
+ weights and random offset when fitting the training data.
119
+ Pass an int for reproducible output across multiple function calls.
120
+ See :term:`Glossary <random_state>`.
106
121
  """
107
122
 
108
123
  def __init__( # type: ignore[no-untyped-def]
@@ -114,6 +129,7 @@ class RBFSampler(BaseTransformer):
114
129
  input_cols: Optional[Union[str, Iterable[str]]] = None,
115
130
  output_cols: Optional[Union[str, Iterable[str]]] = None,
116
131
  label_cols: Optional[Union[str, Iterable[str]]] = None,
132
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
117
133
  drop_input_cols: Optional[bool] = False,
118
134
  sample_weight_col: Optional[str] = None,
119
135
  ) -> None:
@@ -122,9 +138,10 @@ class RBFSampler(BaseTransformer):
122
138
  self.set_input_cols(input_cols)
123
139
  self.set_output_cols(output_cols)
124
140
  self.set_label_cols(label_cols)
141
+ self.set_passthrough_cols(passthrough_cols)
125
142
  self.set_drop_input_cols(drop_input_cols)
126
143
  self.set_sample_weight_col(sample_weight_col)
127
- deps = set(SklearnWrapperProvider().dependencies)
144
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
128
145
 
129
146
  self._deps = list(deps)
130
147
 
@@ -135,13 +152,14 @@ class RBFSampler(BaseTransformer):
135
152
  args=init_args,
136
153
  klass=sklearn.kernel_approximation.RBFSampler
137
154
  )
138
- self._sklearn_object = sklearn.kernel_approximation.RBFSampler(
155
+ self._sklearn_object: Any = sklearn.kernel_approximation.RBFSampler(
139
156
  **cleaned_up_init_args,
140
157
  )
141
158
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
142
159
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
143
160
  self._snowpark_cols: Optional[List[str]] = self.input_cols
144
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
161
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
162
+ self._autogenerated = True
145
163
 
146
164
  def _get_rand_id(self) -> str:
147
165
  """
@@ -152,24 +170,6 @@ class RBFSampler(BaseTransformer):
152
170
  """
153
171
  return str(uuid4()).replace("-", "_").upper()
154
172
 
155
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
156
- """
157
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
158
-
159
- Args:
160
- dataset: Input dataset.
161
- """
162
- if not self.input_cols:
163
- cols = [
164
- c for c in dataset.columns
165
- if c not in self.get_label_cols() and c != self.sample_weight_col
166
- ]
167
- self.set_input_cols(input_cols=cols)
168
-
169
- if not self.output_cols:
170
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
171
- self.set_output_cols(output_cols=cols)
172
-
173
173
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RBFSampler":
174
174
  """
175
175
  Input columns setter.
@@ -215,54 +215,48 @@ class RBFSampler(BaseTransformer):
215
215
  self
216
216
  """
217
217
  self._infer_input_output_cols(dataset)
218
- if isinstance(dataset, pd.DataFrame):
219
- assert self._sklearn_object is not None # keep mypy happy
220
- self._sklearn_object = self._handlers.fit_pandas(
221
- dataset,
222
- self._sklearn_object,
223
- self.input_cols,
224
- self.label_cols,
225
- self.sample_weight_col
226
- )
227
- elif isinstance(dataset, DataFrame):
228
- self._fit_snowpark(dataset)
229
- else:
230
- raise TypeError(
231
- f"Unexpected dataset type: {type(dataset)}."
232
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
233
- )
218
+ if isinstance(dataset, DataFrame):
219
+ session = dataset._session
220
+ assert session is not None # keep mypy happy
221
+ # Validate that key package version in user workspace are supported in snowflake conda channel
222
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
223
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
224
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
225
+
226
+ # Specify input columns so column pruning will be enforced
227
+ selected_cols = self._get_active_columns()
228
+ if len(selected_cols) > 0:
229
+ dataset = dataset.select(selected_cols)
230
+
231
+ self._snowpark_cols = dataset.select(self.input_cols).columns
232
+
233
+ # If we are already in a stored procedure, no need to kick off another one.
234
+ if SNOWML_SPROC_ENV in os.environ:
235
+ statement_params = telemetry.get_function_usage_statement_params(
236
+ project=_PROJECT,
237
+ subproject=_SUBPROJECT,
238
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RBFSampler.__class__.__name__),
239
+ api_calls=[Session.call],
240
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
241
+ )
242
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
243
+ pd_df.columns = dataset.columns
244
+ dataset = pd_df
245
+
246
+ model_trainer = ModelTrainerBuilder.build(
247
+ estimator=self._sklearn_object,
248
+ dataset=dataset,
249
+ input_cols=self.input_cols,
250
+ label_cols=self.label_cols,
251
+ sample_weight_col=self.sample_weight_col,
252
+ autogenerated=self._autogenerated,
253
+ subproject=_SUBPROJECT
254
+ )
255
+ self._sklearn_object = model_trainer.train()
234
256
  self._is_fitted = True
235
257
  self._get_model_signatures(dataset)
236
258
  return self
237
259
 
238
- def _fit_snowpark(self, dataset: DataFrame) -> None:
239
- session = dataset._session
240
- assert session is not None # keep mypy happy
241
- # Validate that key package version in user workspace are supported in snowflake conda channel
242
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
243
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
244
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
245
-
246
- # Specify input columns so column pruning will be enforced
247
- selected_cols = self._get_active_columns()
248
- if len(selected_cols) > 0:
249
- dataset = dataset.select(selected_cols)
250
-
251
- estimator = self._sklearn_object
252
- assert estimator is not None # Keep mypy happy
253
-
254
- self._snowpark_cols = dataset.select(self.input_cols).columns
255
-
256
- self._sklearn_object = self._handlers.fit_snowpark(
257
- dataset,
258
- session,
259
- estimator,
260
- ["snowflake-snowpark-python"] + self._get_dependencies(),
261
- self.input_cols,
262
- self.label_cols,
263
- self.sample_weight_col,
264
- )
265
-
266
260
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
267
261
  if self._drop_input_cols:
268
262
  return []
@@ -450,11 +444,6 @@ class RBFSampler(BaseTransformer):
450
444
  subproject=_SUBPROJECT,
451
445
  custom_tags=dict([("autogen", True)]),
452
446
  )
453
- @telemetry.add_stmt_params_to_df(
454
- project=_PROJECT,
455
- subproject=_SUBPROJECT,
456
- custom_tags=dict([("autogen", True)]),
457
- )
458
447
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
459
448
  """Method not supported for this class.
460
449
 
@@ -506,11 +495,6 @@ class RBFSampler(BaseTransformer):
506
495
  subproject=_SUBPROJECT,
507
496
  custom_tags=dict([("autogen", True)]),
508
497
  )
509
- @telemetry.add_stmt_params_to_df(
510
- project=_PROJECT,
511
- subproject=_SUBPROJECT,
512
- custom_tags=dict([("autogen", True)]),
513
- )
514
498
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
515
499
  """Apply the approximate feature map to X
516
500
  For more details on this function, see [sklearn.kernel_approximation.RBFSampler.transform]
@@ -569,7 +553,8 @@ class RBFSampler(BaseTransformer):
569
553
  if False:
570
554
  self.fit(dataset)
571
555
  assert self._sklearn_object is not None
572
- return self._sklearn_object.labels_
556
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
557
+ return labels
573
558
  else:
574
559
  raise NotImplementedError
575
560
 
@@ -605,6 +590,7 @@ class RBFSampler(BaseTransformer):
605
590
  output_cols = []
606
591
 
607
592
  # Make sure column names are valid snowflake identifiers.
593
+ assert output_cols is not None # Make MyPy happy
608
594
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
609
595
 
610
596
  return rv
@@ -615,11 +601,6 @@ class RBFSampler(BaseTransformer):
615
601
  subproject=_SUBPROJECT,
616
602
  custom_tags=dict([("autogen", True)]),
617
603
  )
618
- @telemetry.add_stmt_params_to_df(
619
- project=_PROJECT,
620
- subproject=_SUBPROJECT,
621
- custom_tags=dict([("autogen", True)]),
622
- )
623
604
  def predict_proba(
624
605
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
625
606
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -660,11 +641,6 @@ class RBFSampler(BaseTransformer):
660
641
  subproject=_SUBPROJECT,
661
642
  custom_tags=dict([("autogen", True)]),
662
643
  )
663
- @telemetry.add_stmt_params_to_df(
664
- project=_PROJECT,
665
- subproject=_SUBPROJECT,
666
- custom_tags=dict([("autogen", True)]),
667
- )
668
644
  def predict_log_proba(
669
645
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
670
646
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -701,16 +677,6 @@ class RBFSampler(BaseTransformer):
701
677
  return output_df
702
678
 
703
679
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
704
- @telemetry.send_api_usage_telemetry(
705
- project=_PROJECT,
706
- subproject=_SUBPROJECT,
707
- custom_tags=dict([("autogen", True)]),
708
- )
709
- @telemetry.add_stmt_params_to_df(
710
- project=_PROJECT,
711
- subproject=_SUBPROJECT,
712
- custom_tags=dict([("autogen", True)]),
713
- )
714
680
  def decision_function(
715
681
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
716
682
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -809,11 +775,6 @@ class RBFSampler(BaseTransformer):
809
775
  subproject=_SUBPROJECT,
810
776
  custom_tags=dict([("autogen", True)]),
811
777
  )
812
- @telemetry.add_stmt_params_to_df(
813
- project=_PROJECT,
814
- subproject=_SUBPROJECT,
815
- custom_tags=dict([("autogen", True)]),
816
- )
817
778
  def kneighbors(
818
779
  self,
819
780
  dataset: Union[DataFrame, pd.DataFrame],
@@ -873,18 +834,28 @@ class RBFSampler(BaseTransformer):
873
834
  # For classifier, the type of predict is the same as the type of label
874
835
  if self._sklearn_object._estimator_type == 'classifier':
875
836
  # label columns is the desired type for output
876
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
837
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
877
838
  # rename the output columns
878
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
839
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
840
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
841
+ ([] if self._drop_input_cols else inputs)
842
+ + outputs)
843
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
844
+ # For outlier models, returns -1 for outliers and 1 for inliers.
845
+ # Clusterer returns int64 cluster labels.
846
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
847
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
879
848
  self._model_signature_dict["predict"] = ModelSignature(inputs,
880
849
  ([] if self._drop_input_cols else inputs)
881
850
  + outputs)
851
+
882
852
  # For regressor, the type of predict is float64
883
853
  elif self._sklearn_object._estimator_type == 'regressor':
884
854
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
885
855
  self._model_signature_dict["predict"] = ModelSignature(inputs,
886
856
  ([] if self._drop_input_cols else inputs)
887
857
  + outputs)
858
+
888
859
  for prob_func in PROB_FUNCTIONS:
889
860
  if hasattr(self, prob_func):
890
861
  output_cols_prefix: str = f"{prob_func}_"