snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class FastICA(BaseTransformer):
|
57
58
|
r"""FastICA: a fast algorithm for Independent Component Analysis
|
58
59
|
For more details on this class, see [sklearn.decomposition.FastICA]
|
@@ -60,6 +61,49 @@ class FastICA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of components to use. If None is passed, all are used.
|
65
109
|
|
@@ -119,35 +163,6 @@ class FastICA(BaseTransformer):
|
|
119
163
|
normal distribution. Pass an int, for reproducible results
|
120
164
|
across multiple function calls.
|
121
165
|
See :term:`Glossary <random_state>`.
|
122
|
-
|
123
|
-
input_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that contain features.
|
125
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
126
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
127
|
-
considered input columns.
|
128
|
-
|
129
|
-
label_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that contain labels.
|
131
|
-
This is a required param for estimators, as there is no way to infer these
|
132
|
-
columns. If this parameter is not specified, then object is fitted without
|
133
|
-
labels (like a transformer).
|
134
|
-
|
135
|
-
output_cols: Optional[Union[str, List[str]]]
|
136
|
-
A string or list of strings representing column names that will store the
|
137
|
-
output of predict and transform operations. The length of output_cols must
|
138
|
-
match the expected number of output columns from the specific estimator or
|
139
|
-
transformer class used.
|
140
|
-
If this parameter is not specified, output column names are derived by
|
141
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
142
|
-
column names work for estimator's predict() method, but output_cols must
|
143
|
-
be set explicitly for transformers.
|
144
|
-
|
145
|
-
sample_weight_col: Optional[str]
|
146
|
-
A string representing the column name containing the sample weights.
|
147
|
-
This argument is only required when working with weighted datasets.
|
148
|
-
|
149
|
-
drop_input_cols: Optional[bool], default=False
|
150
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
151
166
|
"""
|
152
167
|
|
153
168
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -166,6 +181,7 @@ class FastICA(BaseTransformer):
|
|
166
181
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
167
182
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
168
183
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
169
185
|
drop_input_cols: Optional[bool] = False,
|
170
186
|
sample_weight_col: Optional[str] = None,
|
171
187
|
) -> None:
|
@@ -174,9 +190,10 @@ class FastICA(BaseTransformer):
|
|
174
190
|
self.set_input_cols(input_cols)
|
175
191
|
self.set_output_cols(output_cols)
|
176
192
|
self.set_label_cols(label_cols)
|
193
|
+
self.set_passthrough_cols(passthrough_cols)
|
177
194
|
self.set_drop_input_cols(drop_input_cols)
|
178
195
|
self.set_sample_weight_col(sample_weight_col)
|
179
|
-
deps = set(
|
196
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
180
197
|
|
181
198
|
self._deps = list(deps)
|
182
199
|
|
@@ -194,13 +211,14 @@ class FastICA(BaseTransformer):
|
|
194
211
|
args=init_args,
|
195
212
|
klass=sklearn.decomposition.FastICA
|
196
213
|
)
|
197
|
-
self._sklearn_object = sklearn.decomposition.FastICA(
|
214
|
+
self._sklearn_object: Any = sklearn.decomposition.FastICA(
|
198
215
|
**cleaned_up_init_args,
|
199
216
|
)
|
200
217
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
201
218
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
202
219
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
203
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FastICA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
220
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FastICA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
221
|
+
self._autogenerated = True
|
204
222
|
|
205
223
|
def _get_rand_id(self) -> str:
|
206
224
|
"""
|
@@ -211,24 +229,6 @@ class FastICA(BaseTransformer):
|
|
211
229
|
"""
|
212
230
|
return str(uuid4()).replace("-", "_").upper()
|
213
231
|
|
214
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
215
|
-
"""
|
216
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
217
|
-
|
218
|
-
Args:
|
219
|
-
dataset: Input dataset.
|
220
|
-
"""
|
221
|
-
if not self.input_cols:
|
222
|
-
cols = [
|
223
|
-
c for c in dataset.columns
|
224
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
225
|
-
]
|
226
|
-
self.set_input_cols(input_cols=cols)
|
227
|
-
|
228
|
-
if not self.output_cols:
|
229
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
230
|
-
self.set_output_cols(output_cols=cols)
|
231
|
-
|
232
232
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "FastICA":
|
233
233
|
"""
|
234
234
|
Input columns setter.
|
@@ -274,54 +274,48 @@ class FastICA(BaseTransformer):
|
|
274
274
|
self
|
275
275
|
"""
|
276
276
|
self._infer_input_output_cols(dataset)
|
277
|
-
if isinstance(dataset,
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
self.
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
277
|
+
if isinstance(dataset, DataFrame):
|
278
|
+
session = dataset._session
|
279
|
+
assert session is not None # keep mypy happy
|
280
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
281
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
282
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
283
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
284
|
+
|
285
|
+
# Specify input columns so column pruning will be enforced
|
286
|
+
selected_cols = self._get_active_columns()
|
287
|
+
if len(selected_cols) > 0:
|
288
|
+
dataset = dataset.select(selected_cols)
|
289
|
+
|
290
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
|
+
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
293
|
+
if SNOWML_SPROC_ENV in os.environ:
|
294
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
295
|
+
project=_PROJECT,
|
296
|
+
subproject=_SUBPROJECT,
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FastICA.__class__.__name__),
|
298
|
+
api_calls=[Session.call],
|
299
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
300
|
+
)
|
301
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
302
|
+
pd_df.columns = dataset.columns
|
303
|
+
dataset = pd_df
|
304
|
+
|
305
|
+
model_trainer = ModelTrainerBuilder.build(
|
306
|
+
estimator=self._sklearn_object,
|
307
|
+
dataset=dataset,
|
308
|
+
input_cols=self.input_cols,
|
309
|
+
label_cols=self.label_cols,
|
310
|
+
sample_weight_col=self.sample_weight_col,
|
311
|
+
autogenerated=self._autogenerated,
|
312
|
+
subproject=_SUBPROJECT
|
313
|
+
)
|
314
|
+
self._sklearn_object = model_trainer.train()
|
293
315
|
self._is_fitted = True
|
294
316
|
self._get_model_signatures(dataset)
|
295
317
|
return self
|
296
318
|
|
297
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
298
|
-
session = dataset._session
|
299
|
-
assert session is not None # keep mypy happy
|
300
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
301
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
302
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
303
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
304
|
-
|
305
|
-
# Specify input columns so column pruning will be enforced
|
306
|
-
selected_cols = self._get_active_columns()
|
307
|
-
if len(selected_cols) > 0:
|
308
|
-
dataset = dataset.select(selected_cols)
|
309
|
-
|
310
|
-
estimator = self._sklearn_object
|
311
|
-
assert estimator is not None # Keep mypy happy
|
312
|
-
|
313
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
314
|
-
|
315
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
316
|
-
dataset,
|
317
|
-
session,
|
318
|
-
estimator,
|
319
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
320
|
-
self.input_cols,
|
321
|
-
self.label_cols,
|
322
|
-
self.sample_weight_col,
|
323
|
-
)
|
324
|
-
|
325
319
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
326
320
|
if self._drop_input_cols:
|
327
321
|
return []
|
@@ -509,11 +503,6 @@ class FastICA(BaseTransformer):
|
|
509
503
|
subproject=_SUBPROJECT,
|
510
504
|
custom_tags=dict([("autogen", True)]),
|
511
505
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
506
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
507
|
"""Method not supported for this class.
|
519
508
|
|
@@ -565,11 +554,6 @@ class FastICA(BaseTransformer):
|
|
565
554
|
subproject=_SUBPROJECT,
|
566
555
|
custom_tags=dict([("autogen", True)]),
|
567
556
|
)
|
568
|
-
@telemetry.add_stmt_params_to_df(
|
569
|
-
project=_PROJECT,
|
570
|
-
subproject=_SUBPROJECT,
|
571
|
-
custom_tags=dict([("autogen", True)]),
|
572
|
-
)
|
573
557
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
574
558
|
"""Recover the sources from X (apply the unmixing matrix)
|
575
559
|
For more details on this function, see [sklearn.decomposition.FastICA.transform]
|
@@ -628,7 +612,8 @@ class FastICA(BaseTransformer):
|
|
628
612
|
if False:
|
629
613
|
self.fit(dataset)
|
630
614
|
assert self._sklearn_object is not None
|
631
|
-
|
615
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
616
|
+
return labels
|
632
617
|
else:
|
633
618
|
raise NotImplementedError
|
634
619
|
|
@@ -664,6 +649,7 @@ class FastICA(BaseTransformer):
|
|
664
649
|
output_cols = []
|
665
650
|
|
666
651
|
# Make sure column names are valid snowflake identifiers.
|
652
|
+
assert output_cols is not None # Make MyPy happy
|
667
653
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
668
654
|
|
669
655
|
return rv
|
@@ -674,11 +660,6 @@ class FastICA(BaseTransformer):
|
|
674
660
|
subproject=_SUBPROJECT,
|
675
661
|
custom_tags=dict([("autogen", True)]),
|
676
662
|
)
|
677
|
-
@telemetry.add_stmt_params_to_df(
|
678
|
-
project=_PROJECT,
|
679
|
-
subproject=_SUBPROJECT,
|
680
|
-
custom_tags=dict([("autogen", True)]),
|
681
|
-
)
|
682
663
|
def predict_proba(
|
683
664
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
684
665
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -719,11 +700,6 @@ class FastICA(BaseTransformer):
|
|
719
700
|
subproject=_SUBPROJECT,
|
720
701
|
custom_tags=dict([("autogen", True)]),
|
721
702
|
)
|
722
|
-
@telemetry.add_stmt_params_to_df(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
703
|
def predict_log_proba(
|
728
704
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
729
705
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -760,16 +736,6 @@ class FastICA(BaseTransformer):
|
|
760
736
|
return output_df
|
761
737
|
|
762
738
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
763
|
-
@telemetry.send_api_usage_telemetry(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
|
-
@telemetry.add_stmt_params_to_df(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
739
|
def decision_function(
|
774
740
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
775
741
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -868,11 +834,6 @@ class FastICA(BaseTransformer):
|
|
868
834
|
subproject=_SUBPROJECT,
|
869
835
|
custom_tags=dict([("autogen", True)]),
|
870
836
|
)
|
871
|
-
@telemetry.add_stmt_params_to_df(
|
872
|
-
project=_PROJECT,
|
873
|
-
subproject=_SUBPROJECT,
|
874
|
-
custom_tags=dict([("autogen", True)]),
|
875
|
-
)
|
876
837
|
def kneighbors(
|
877
838
|
self,
|
878
839
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -932,18 +893,28 @@ class FastICA(BaseTransformer):
|
|
932
893
|
# For classifier, the type of predict is the same as the type of label
|
933
894
|
if self._sklearn_object._estimator_type == 'classifier':
|
934
895
|
# label columns is the desired type for output
|
935
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
896
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
936
897
|
# rename the output columns
|
937
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
898
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
899
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
900
|
+
([] if self._drop_input_cols else inputs)
|
901
|
+
+ outputs)
|
902
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
903
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
904
|
+
# Clusterer returns int64 cluster labels.
|
905
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
906
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
938
907
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
939
908
|
([] if self._drop_input_cols else inputs)
|
940
909
|
+ outputs)
|
910
|
+
|
941
911
|
# For regressor, the type of predict is float64
|
942
912
|
elif self._sklearn_object._estimator_type == 'regressor':
|
943
913
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
944
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
945
915
|
([] if self._drop_input_cols else inputs)
|
946
916
|
+ outputs)
|
917
|
+
|
947
918
|
for prob_func in PROB_FUNCTIONS:
|
948
919
|
if hasattr(self, prob_func):
|
949
920
|
output_cols_prefix: str = f"{prob_func}_"
|