snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SVR(BaseTransformer):
57
58
  r"""Epsilon-Support Vector Regression
58
59
  For more details on this class, see [sklearn.svm.SVR]
@@ -60,6 +61,51 @@ class SVR(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'
64
110
  Specifies the kernel type to be used in the algorithm.
65
111
  If none is given, 'rbf' will be used. If a callable is given it is
@@ -109,35 +155,6 @@ class SVR(BaseTransformer):
109
155
 
110
156
  max_iter: int, default=-1
111
157
  Hard limit on iterations within solver, or -1 for no limit.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols and sample_weight_col parameters are
117
- considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- drop_input_cols: Optional[bool], default=False
140
- If set, the response of predict(), transform() methods will not contain input columns.
141
158
  """
142
159
 
143
160
  def __init__( # type: ignore[no-untyped-def]
@@ -157,6 +174,7 @@ class SVR(BaseTransformer):
157
174
  input_cols: Optional[Union[str, Iterable[str]]] = None,
158
175
  output_cols: Optional[Union[str, Iterable[str]]] = None,
159
176
  label_cols: Optional[Union[str, Iterable[str]]] = None,
177
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
160
178
  drop_input_cols: Optional[bool] = False,
161
179
  sample_weight_col: Optional[str] = None,
162
180
  ) -> None:
@@ -165,9 +183,10 @@ class SVR(BaseTransformer):
165
183
  self.set_input_cols(input_cols)
166
184
  self.set_output_cols(output_cols)
167
185
  self.set_label_cols(label_cols)
186
+ self.set_passthrough_cols(passthrough_cols)
168
187
  self.set_drop_input_cols(drop_input_cols)
169
188
  self.set_sample_weight_col(sample_weight_col)
170
- deps = set(SklearnWrapperProvider().dependencies)
189
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
171
190
 
172
191
  self._deps = list(deps)
173
192
 
@@ -186,13 +205,14 @@ class SVR(BaseTransformer):
186
205
  args=init_args,
187
206
  klass=sklearn.svm.SVR
188
207
  )
189
- self._sklearn_object = sklearn.svm.SVR(
208
+ self._sklearn_object: Any = sklearn.svm.SVR(
190
209
  **cleaned_up_init_args,
191
210
  )
192
211
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
193
212
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
194
213
  self._snowpark_cols: Optional[List[str]] = self.input_cols
195
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
214
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
215
+ self._autogenerated = True
196
216
 
197
217
  def _get_rand_id(self) -> str:
198
218
  """
@@ -203,24 +223,6 @@ class SVR(BaseTransformer):
203
223
  """
204
224
  return str(uuid4()).replace("-", "_").upper()
205
225
 
206
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
207
- """
208
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
209
-
210
- Args:
211
- dataset: Input dataset.
212
- """
213
- if not self.input_cols:
214
- cols = [
215
- c for c in dataset.columns
216
- if c not in self.get_label_cols() and c != self.sample_weight_col
217
- ]
218
- self.set_input_cols(input_cols=cols)
219
-
220
- if not self.output_cols:
221
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
222
- self.set_output_cols(output_cols=cols)
223
-
224
226
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SVR":
225
227
  """
226
228
  Input columns setter.
@@ -266,54 +268,48 @@ class SVR(BaseTransformer):
266
268
  self
267
269
  """
268
270
  self._infer_input_output_cols(dataset)
269
- if isinstance(dataset, pd.DataFrame):
270
- assert self._sklearn_object is not None # keep mypy happy
271
- self._sklearn_object = self._handlers.fit_pandas(
272
- dataset,
273
- self._sklearn_object,
274
- self.input_cols,
275
- self.label_cols,
276
- self.sample_weight_col
277
- )
278
- elif isinstance(dataset, DataFrame):
279
- self._fit_snowpark(dataset)
280
- else:
281
- raise TypeError(
282
- f"Unexpected dataset type: {type(dataset)}."
283
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
284
- )
271
+ if isinstance(dataset, DataFrame):
272
+ session = dataset._session
273
+ assert session is not None # keep mypy happy
274
+ # Validate that key package version in user workspace are supported in snowflake conda channel
275
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
276
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
277
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
278
+
279
+ # Specify input columns so column pruning will be enforced
280
+ selected_cols = self._get_active_columns()
281
+ if len(selected_cols) > 0:
282
+ dataset = dataset.select(selected_cols)
283
+
284
+ self._snowpark_cols = dataset.select(self.input_cols).columns
285
+
286
+ # If we are already in a stored procedure, no need to kick off another one.
287
+ if SNOWML_SPROC_ENV in os.environ:
288
+ statement_params = telemetry.get_function_usage_statement_params(
289
+ project=_PROJECT,
290
+ subproject=_SUBPROJECT,
291
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVR.__class__.__name__),
292
+ api_calls=[Session.call],
293
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
+ )
295
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
296
+ pd_df.columns = dataset.columns
297
+ dataset = pd_df
298
+
299
+ model_trainer = ModelTrainerBuilder.build(
300
+ estimator=self._sklearn_object,
301
+ dataset=dataset,
302
+ input_cols=self.input_cols,
303
+ label_cols=self.label_cols,
304
+ sample_weight_col=self.sample_weight_col,
305
+ autogenerated=self._autogenerated,
306
+ subproject=_SUBPROJECT
307
+ )
308
+ self._sklearn_object = model_trainer.train()
285
309
  self._is_fitted = True
286
310
  self._get_model_signatures(dataset)
287
311
  return self
288
312
 
289
- def _fit_snowpark(self, dataset: DataFrame) -> None:
290
- session = dataset._session
291
- assert session is not None # keep mypy happy
292
- # Validate that key package version in user workspace are supported in snowflake conda channel
293
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
294
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
295
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
296
-
297
- # Specify input columns so column pruning will be enforced
298
- selected_cols = self._get_active_columns()
299
- if len(selected_cols) > 0:
300
- dataset = dataset.select(selected_cols)
301
-
302
- estimator = self._sklearn_object
303
- assert estimator is not None # Keep mypy happy
304
-
305
- self._snowpark_cols = dataset.select(self.input_cols).columns
306
-
307
- self._sklearn_object = self._handlers.fit_snowpark(
308
- dataset,
309
- session,
310
- estimator,
311
- ["snowflake-snowpark-python"] + self._get_dependencies(),
312
- self.input_cols,
313
- self.label_cols,
314
- self.sample_weight_col,
315
- )
316
-
317
313
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
318
314
  if self._drop_input_cols:
319
315
  return []
@@ -501,11 +497,6 @@ class SVR(BaseTransformer):
501
497
  subproject=_SUBPROJECT,
502
498
  custom_tags=dict([("autogen", True)]),
503
499
  )
504
- @telemetry.add_stmt_params_to_df(
505
- project=_PROJECT,
506
- subproject=_SUBPROJECT,
507
- custom_tags=dict([("autogen", True)]),
508
- )
509
500
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
510
501
  """Perform regression on samples in X
511
502
  For more details on this function, see [sklearn.svm.SVR.predict]
@@ -559,11 +550,6 @@ class SVR(BaseTransformer):
559
550
  subproject=_SUBPROJECT,
560
551
  custom_tags=dict([("autogen", True)]),
561
552
  )
562
- @telemetry.add_stmt_params_to_df(
563
- project=_PROJECT,
564
- subproject=_SUBPROJECT,
565
- custom_tags=dict([("autogen", True)]),
566
- )
567
553
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
568
554
  """Method not supported for this class.
569
555
 
@@ -620,7 +606,8 @@ class SVR(BaseTransformer):
620
606
  if False:
621
607
  self.fit(dataset)
622
608
  assert self._sklearn_object is not None
623
- return self._sklearn_object.labels_
609
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
610
+ return labels
624
611
  else:
625
612
  raise NotImplementedError
626
613
 
@@ -656,6 +643,7 @@ class SVR(BaseTransformer):
656
643
  output_cols = []
657
644
 
658
645
  # Make sure column names are valid snowflake identifiers.
646
+ assert output_cols is not None # Make MyPy happy
659
647
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
660
648
 
661
649
  return rv
@@ -666,11 +654,6 @@ class SVR(BaseTransformer):
666
654
  subproject=_SUBPROJECT,
667
655
  custom_tags=dict([("autogen", True)]),
668
656
  )
669
- @telemetry.add_stmt_params_to_df(
670
- project=_PROJECT,
671
- subproject=_SUBPROJECT,
672
- custom_tags=dict([("autogen", True)]),
673
- )
674
657
  def predict_proba(
675
658
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
676
659
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -711,11 +694,6 @@ class SVR(BaseTransformer):
711
694
  subproject=_SUBPROJECT,
712
695
  custom_tags=dict([("autogen", True)]),
713
696
  )
714
- @telemetry.add_stmt_params_to_df(
715
- project=_PROJECT,
716
- subproject=_SUBPROJECT,
717
- custom_tags=dict([("autogen", True)]),
718
- )
719
697
  def predict_log_proba(
720
698
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
721
699
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -752,16 +730,6 @@ class SVR(BaseTransformer):
752
730
  return output_df
753
731
 
754
732
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
755
- @telemetry.send_api_usage_telemetry(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
- @telemetry.add_stmt_params_to_df(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
733
  def decision_function(
766
734
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
767
735
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -862,11 +830,6 @@ class SVR(BaseTransformer):
862
830
  subproject=_SUBPROJECT,
863
831
  custom_tags=dict([("autogen", True)]),
864
832
  )
865
- @telemetry.add_stmt_params_to_df(
866
- project=_PROJECT,
867
- subproject=_SUBPROJECT,
868
- custom_tags=dict([("autogen", True)]),
869
- )
870
833
  def kneighbors(
871
834
  self,
872
835
  dataset: Union[DataFrame, pd.DataFrame],
@@ -926,18 +889,28 @@ class SVR(BaseTransformer):
926
889
  # For classifier, the type of predict is the same as the type of label
927
890
  if self._sklearn_object._estimator_type == 'classifier':
928
891
  # label columns is the desired type for output
929
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
892
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
930
893
  # rename the output columns
931
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
894
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
932
895
  self._model_signature_dict["predict"] = ModelSignature(inputs,
933
896
  ([] if self._drop_input_cols else inputs)
934
897
  + outputs)
898
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
899
+ # For outlier models, returns -1 for outliers and 1 for inliers.
900
+ # Clusterer returns int64 cluster labels.
901
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
902
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
903
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
904
+ ([] if self._drop_input_cols else inputs)
905
+ + outputs)
906
+
935
907
  # For regressor, the type of predict is float64
936
908
  elif self._sklearn_object._estimator_type == 'regressor':
937
909
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
938
910
  self._model_signature_dict["predict"] = ModelSignature(inputs,
939
911
  ([] if self._drop_input_cols else inputs)
940
912
  + outputs)
913
+
941
914
  for prob_func in PROB_FUNCTIONS:
942
915
  if hasattr(self, prob_func):
943
916
  output_cols_prefix: str = f"{prob_func}_"