snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
snowflake/ml/modeling/svm/svr.py
CHANGED
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SVR(BaseTransformer):
|
57
58
|
r"""Epsilon-Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.SVR]
|
@@ -60,6 +61,51 @@ class SVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'
|
64
110
|
Specifies the kernel type to be used in the algorithm.
|
65
111
|
If none is given, 'rbf' will be used. If a callable is given it is
|
@@ -109,35 +155,6 @@ class SVR(BaseTransformer):
|
|
109
155
|
|
110
156
|
max_iter: int, default=-1
|
111
157
|
Hard limit on iterations within solver, or -1 for no limit.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
117
|
-
considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
drop_input_cols: Optional[bool], default=False
|
140
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
141
158
|
"""
|
142
159
|
|
143
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -157,6 +174,7 @@ class SVR(BaseTransformer):
|
|
157
174
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
158
175
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
159
176
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
177
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
160
178
|
drop_input_cols: Optional[bool] = False,
|
161
179
|
sample_weight_col: Optional[str] = None,
|
162
180
|
) -> None:
|
@@ -165,9 +183,10 @@ class SVR(BaseTransformer):
|
|
165
183
|
self.set_input_cols(input_cols)
|
166
184
|
self.set_output_cols(output_cols)
|
167
185
|
self.set_label_cols(label_cols)
|
186
|
+
self.set_passthrough_cols(passthrough_cols)
|
168
187
|
self.set_drop_input_cols(drop_input_cols)
|
169
188
|
self.set_sample_weight_col(sample_weight_col)
|
170
|
-
deps = set(
|
189
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
171
190
|
|
172
191
|
self._deps = list(deps)
|
173
192
|
|
@@ -186,13 +205,14 @@ class SVR(BaseTransformer):
|
|
186
205
|
args=init_args,
|
187
206
|
klass=sklearn.svm.SVR
|
188
207
|
)
|
189
|
-
self._sklearn_object = sklearn.svm.SVR(
|
208
|
+
self._sklearn_object: Any = sklearn.svm.SVR(
|
190
209
|
**cleaned_up_init_args,
|
191
210
|
)
|
192
211
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
193
212
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
194
213
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
195
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
214
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
215
|
+
self._autogenerated = True
|
196
216
|
|
197
217
|
def _get_rand_id(self) -> str:
|
198
218
|
"""
|
@@ -203,24 +223,6 @@ class SVR(BaseTransformer):
|
|
203
223
|
"""
|
204
224
|
return str(uuid4()).replace("-", "_").upper()
|
205
225
|
|
206
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
207
|
-
"""
|
208
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
209
|
-
|
210
|
-
Args:
|
211
|
-
dataset: Input dataset.
|
212
|
-
"""
|
213
|
-
if not self.input_cols:
|
214
|
-
cols = [
|
215
|
-
c for c in dataset.columns
|
216
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
217
|
-
]
|
218
|
-
self.set_input_cols(input_cols=cols)
|
219
|
-
|
220
|
-
if not self.output_cols:
|
221
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
222
|
-
self.set_output_cols(output_cols=cols)
|
223
|
-
|
224
226
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SVR":
|
225
227
|
"""
|
226
228
|
Input columns setter.
|
@@ -266,54 +268,48 @@ class SVR(BaseTransformer):
|
|
266
268
|
self
|
267
269
|
"""
|
268
270
|
self._infer_input_output_cols(dataset)
|
269
|
-
if isinstance(dataset,
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
self.
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
271
|
+
if isinstance(dataset, DataFrame):
|
272
|
+
session = dataset._session
|
273
|
+
assert session is not None # keep mypy happy
|
274
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
275
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
276
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
277
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
278
|
+
|
279
|
+
# Specify input columns so column pruning will be enforced
|
280
|
+
selected_cols = self._get_active_columns()
|
281
|
+
if len(selected_cols) > 0:
|
282
|
+
dataset = dataset.select(selected_cols)
|
283
|
+
|
284
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
|
+
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
287
|
+
if SNOWML_SPROC_ENV in os.environ:
|
288
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
289
|
+
project=_PROJECT,
|
290
|
+
subproject=_SUBPROJECT,
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVR.__class__.__name__),
|
292
|
+
api_calls=[Session.call],
|
293
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
294
|
+
)
|
295
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
|
+
pd_df.columns = dataset.columns
|
297
|
+
dataset = pd_df
|
298
|
+
|
299
|
+
model_trainer = ModelTrainerBuilder.build(
|
300
|
+
estimator=self._sklearn_object,
|
301
|
+
dataset=dataset,
|
302
|
+
input_cols=self.input_cols,
|
303
|
+
label_cols=self.label_cols,
|
304
|
+
sample_weight_col=self.sample_weight_col,
|
305
|
+
autogenerated=self._autogenerated,
|
306
|
+
subproject=_SUBPROJECT
|
307
|
+
)
|
308
|
+
self._sklearn_object = model_trainer.train()
|
285
309
|
self._is_fitted = True
|
286
310
|
self._get_model_signatures(dataset)
|
287
311
|
return self
|
288
312
|
|
289
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
290
|
-
session = dataset._session
|
291
|
-
assert session is not None # keep mypy happy
|
292
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
293
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
294
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
295
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
296
|
-
|
297
|
-
# Specify input columns so column pruning will be enforced
|
298
|
-
selected_cols = self._get_active_columns()
|
299
|
-
if len(selected_cols) > 0:
|
300
|
-
dataset = dataset.select(selected_cols)
|
301
|
-
|
302
|
-
estimator = self._sklearn_object
|
303
|
-
assert estimator is not None # Keep mypy happy
|
304
|
-
|
305
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
306
|
-
|
307
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
308
|
-
dataset,
|
309
|
-
session,
|
310
|
-
estimator,
|
311
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
312
|
-
self.input_cols,
|
313
|
-
self.label_cols,
|
314
|
-
self.sample_weight_col,
|
315
|
-
)
|
316
|
-
|
317
313
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
318
314
|
if self._drop_input_cols:
|
319
315
|
return []
|
@@ -501,11 +497,6 @@ class SVR(BaseTransformer):
|
|
501
497
|
subproject=_SUBPROJECT,
|
502
498
|
custom_tags=dict([("autogen", True)]),
|
503
499
|
)
|
504
|
-
@telemetry.add_stmt_params_to_df(
|
505
|
-
project=_PROJECT,
|
506
|
-
subproject=_SUBPROJECT,
|
507
|
-
custom_tags=dict([("autogen", True)]),
|
508
|
-
)
|
509
500
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
510
501
|
"""Perform regression on samples in X
|
511
502
|
For more details on this function, see [sklearn.svm.SVR.predict]
|
@@ -559,11 +550,6 @@ class SVR(BaseTransformer):
|
|
559
550
|
subproject=_SUBPROJECT,
|
560
551
|
custom_tags=dict([("autogen", True)]),
|
561
552
|
)
|
562
|
-
@telemetry.add_stmt_params_to_df(
|
563
|
-
project=_PROJECT,
|
564
|
-
subproject=_SUBPROJECT,
|
565
|
-
custom_tags=dict([("autogen", True)]),
|
566
|
-
)
|
567
553
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
568
554
|
"""Method not supported for this class.
|
569
555
|
|
@@ -620,7 +606,8 @@ class SVR(BaseTransformer):
|
|
620
606
|
if False:
|
621
607
|
self.fit(dataset)
|
622
608
|
assert self._sklearn_object is not None
|
623
|
-
|
609
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
610
|
+
return labels
|
624
611
|
else:
|
625
612
|
raise NotImplementedError
|
626
613
|
|
@@ -656,6 +643,7 @@ class SVR(BaseTransformer):
|
|
656
643
|
output_cols = []
|
657
644
|
|
658
645
|
# Make sure column names are valid snowflake identifiers.
|
646
|
+
assert output_cols is not None # Make MyPy happy
|
659
647
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
660
648
|
|
661
649
|
return rv
|
@@ -666,11 +654,6 @@ class SVR(BaseTransformer):
|
|
666
654
|
subproject=_SUBPROJECT,
|
667
655
|
custom_tags=dict([("autogen", True)]),
|
668
656
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
657
|
def predict_proba(
|
675
658
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
676
659
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -711,11 +694,6 @@ class SVR(BaseTransformer):
|
|
711
694
|
subproject=_SUBPROJECT,
|
712
695
|
custom_tags=dict([("autogen", True)]),
|
713
696
|
)
|
714
|
-
@telemetry.add_stmt_params_to_df(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
697
|
def predict_log_proba(
|
720
698
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
721
699
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,16 +730,6 @@ class SVR(BaseTransformer):
|
|
752
730
|
return output_df
|
753
731
|
|
754
732
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
755
|
-
@telemetry.send_api_usage_telemetry(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
|
-
@telemetry.add_stmt_params_to_df(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
733
|
def decision_function(
|
766
734
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
767
735
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -862,11 +830,6 @@ class SVR(BaseTransformer):
|
|
862
830
|
subproject=_SUBPROJECT,
|
863
831
|
custom_tags=dict([("autogen", True)]),
|
864
832
|
)
|
865
|
-
@telemetry.add_stmt_params_to_df(
|
866
|
-
project=_PROJECT,
|
867
|
-
subproject=_SUBPROJECT,
|
868
|
-
custom_tags=dict([("autogen", True)]),
|
869
|
-
)
|
870
833
|
def kneighbors(
|
871
834
|
self,
|
872
835
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -926,18 +889,28 @@ class SVR(BaseTransformer):
|
|
926
889
|
# For classifier, the type of predict is the same as the type of label
|
927
890
|
if self._sklearn_object._estimator_type == 'classifier':
|
928
891
|
# label columns is the desired type for output
|
929
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
892
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
930
893
|
# rename the output columns
|
931
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
894
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
932
895
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
933
896
|
([] if self._drop_input_cols else inputs)
|
934
897
|
+ outputs)
|
898
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
899
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
900
|
+
# Clusterer returns int64 cluster labels.
|
901
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
902
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
903
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
904
|
+
([] if self._drop_input_cols else inputs)
|
905
|
+
+ outputs)
|
906
|
+
|
935
907
|
# For regressor, the type of predict is float64
|
936
908
|
elif self._sklearn_object._estimator_type == 'regressor':
|
937
909
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
938
910
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
939
911
|
([] if self._drop_input_cols else inputs)
|
940
912
|
+ outputs)
|
913
|
+
|
941
914
|
for prob_func in PROB_FUNCTIONS:
|
942
915
|
if hasattr(self, prob_func):
|
943
916
|
output_cols_prefix: str = f"{prob_func}_"
|