snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultiTaskLassoCV(BaseTransformer):
|
57
58
|
r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
|
@@ -60,6 +61,51 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
eps: float, default=1e-3
|
64
110
|
Length of the path. ``eps=1e-3`` means that
|
65
111
|
``alpha_min / alpha_max = 1e-3``.
|
@@ -123,35 +169,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
123
169
|
rather than looping over features sequentially by default. This
|
124
170
|
(setting to 'random') often leads to significantly faster convergence
|
125
171
|
especially when tol is higher than 1e-4.
|
126
|
-
|
127
|
-
input_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that contain features.
|
129
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
130
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
131
|
-
considered input columns.
|
132
|
-
|
133
|
-
label_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that contain labels.
|
135
|
-
This is a required param for estimators, as there is no way to infer these
|
136
|
-
columns. If this parameter is not specified, then object is fitted without
|
137
|
-
labels (like a transformer).
|
138
|
-
|
139
|
-
output_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that will store the
|
141
|
-
output of predict and transform operations. The length of output_cols must
|
142
|
-
match the expected number of output columns from the specific estimator or
|
143
|
-
transformer class used.
|
144
|
-
If this parameter is not specified, output column names are derived by
|
145
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
146
|
-
column names work for estimator's predict() method, but output_cols must
|
147
|
-
be set explicitly for transformers.
|
148
|
-
|
149
|
-
sample_weight_col: Optional[str]
|
150
|
-
A string representing the column name containing the sample weights.
|
151
|
-
This argument is only required when working with weighted datasets.
|
152
|
-
|
153
|
-
drop_input_cols: Optional[bool], default=False
|
154
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
155
172
|
"""
|
156
173
|
|
157
174
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -172,6 +189,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
172
189
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
173
190
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
174
191
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
192
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
175
193
|
drop_input_cols: Optional[bool] = False,
|
176
194
|
sample_weight_col: Optional[str] = None,
|
177
195
|
) -> None:
|
@@ -180,9 +198,10 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
180
198
|
self.set_input_cols(input_cols)
|
181
199
|
self.set_output_cols(output_cols)
|
182
200
|
self.set_label_cols(label_cols)
|
201
|
+
self.set_passthrough_cols(passthrough_cols)
|
183
202
|
self.set_drop_input_cols(drop_input_cols)
|
184
203
|
self.set_sample_weight_col(sample_weight_col)
|
185
|
-
deps = set(
|
204
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
186
205
|
|
187
206
|
self._deps = list(deps)
|
188
207
|
|
@@ -202,13 +221,14 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
202
221
|
args=init_args,
|
203
222
|
klass=sklearn.linear_model.MultiTaskLassoCV
|
204
223
|
)
|
205
|
-
self._sklearn_object = sklearn.linear_model.MultiTaskLassoCV(
|
224
|
+
self._sklearn_object: Any = sklearn.linear_model.MultiTaskLassoCV(
|
206
225
|
**cleaned_up_init_args,
|
207
226
|
)
|
208
227
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
209
228
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
210
229
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
211
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
230
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
231
|
+
self._autogenerated = True
|
212
232
|
|
213
233
|
def _get_rand_id(self) -> str:
|
214
234
|
"""
|
@@ -219,24 +239,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
219
239
|
"""
|
220
240
|
return str(uuid4()).replace("-", "_").upper()
|
221
241
|
|
222
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
223
|
-
"""
|
224
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
225
|
-
|
226
|
-
Args:
|
227
|
-
dataset: Input dataset.
|
228
|
-
"""
|
229
|
-
if not self.input_cols:
|
230
|
-
cols = [
|
231
|
-
c for c in dataset.columns
|
232
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
233
|
-
]
|
234
|
-
self.set_input_cols(input_cols=cols)
|
235
|
-
|
236
|
-
if not self.output_cols:
|
237
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
238
|
-
self.set_output_cols(output_cols=cols)
|
239
|
-
|
240
242
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultiTaskLassoCV":
|
241
243
|
"""
|
242
244
|
Input columns setter.
|
@@ -282,54 +284,48 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
282
284
|
self
|
283
285
|
"""
|
284
286
|
self._infer_input_output_cols(dataset)
|
285
|
-
if isinstance(dataset,
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
self.
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
287
|
+
if isinstance(dataset, DataFrame):
|
288
|
+
session = dataset._session
|
289
|
+
assert session is not None # keep mypy happy
|
290
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
291
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
292
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
293
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
294
|
+
|
295
|
+
# Specify input columns so column pruning will be enforced
|
296
|
+
selected_cols = self._get_active_columns()
|
297
|
+
if len(selected_cols) > 0:
|
298
|
+
dataset = dataset.select(selected_cols)
|
299
|
+
|
300
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
301
|
+
|
302
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
303
|
+
if SNOWML_SPROC_ENV in os.environ:
|
304
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
305
|
+
project=_PROJECT,
|
306
|
+
subproject=_SUBPROJECT,
|
307
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
|
308
|
+
api_calls=[Session.call],
|
309
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
310
|
+
)
|
311
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
312
|
+
pd_df.columns = dataset.columns
|
313
|
+
dataset = pd_df
|
314
|
+
|
315
|
+
model_trainer = ModelTrainerBuilder.build(
|
316
|
+
estimator=self._sklearn_object,
|
317
|
+
dataset=dataset,
|
318
|
+
input_cols=self.input_cols,
|
319
|
+
label_cols=self.label_cols,
|
320
|
+
sample_weight_col=self.sample_weight_col,
|
321
|
+
autogenerated=self._autogenerated,
|
322
|
+
subproject=_SUBPROJECT
|
323
|
+
)
|
324
|
+
self._sklearn_object = model_trainer.train()
|
301
325
|
self._is_fitted = True
|
302
326
|
self._get_model_signatures(dataset)
|
303
327
|
return self
|
304
328
|
|
305
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
306
|
-
session = dataset._session
|
307
|
-
assert session is not None # keep mypy happy
|
308
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
-
|
313
|
-
# Specify input columns so column pruning will be enforced
|
314
|
-
selected_cols = self._get_active_columns()
|
315
|
-
if len(selected_cols) > 0:
|
316
|
-
dataset = dataset.select(selected_cols)
|
317
|
-
|
318
|
-
estimator = self._sklearn_object
|
319
|
-
assert estimator is not None # Keep mypy happy
|
320
|
-
|
321
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
322
|
-
|
323
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
324
|
-
dataset,
|
325
|
-
session,
|
326
|
-
estimator,
|
327
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
328
|
-
self.input_cols,
|
329
|
-
self.label_cols,
|
330
|
-
self.sample_weight_col,
|
331
|
-
)
|
332
|
-
|
333
329
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
334
330
|
if self._drop_input_cols:
|
335
331
|
return []
|
@@ -517,11 +513,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
517
513
|
subproject=_SUBPROJECT,
|
518
514
|
custom_tags=dict([("autogen", True)]),
|
519
515
|
)
|
520
|
-
@telemetry.add_stmt_params_to_df(
|
521
|
-
project=_PROJECT,
|
522
|
-
subproject=_SUBPROJECT,
|
523
|
-
custom_tags=dict([("autogen", True)]),
|
524
|
-
)
|
525
516
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
526
517
|
"""Predict using the linear model
|
527
518
|
For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.predict]
|
@@ -575,11 +566,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
575
566
|
subproject=_SUBPROJECT,
|
576
567
|
custom_tags=dict([("autogen", True)]),
|
577
568
|
)
|
578
|
-
@telemetry.add_stmt_params_to_df(
|
579
|
-
project=_PROJECT,
|
580
|
-
subproject=_SUBPROJECT,
|
581
|
-
custom_tags=dict([("autogen", True)]),
|
582
|
-
)
|
583
569
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
584
570
|
"""Method not supported for this class.
|
585
571
|
|
@@ -636,7 +622,8 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
636
622
|
if False:
|
637
623
|
self.fit(dataset)
|
638
624
|
assert self._sklearn_object is not None
|
639
|
-
|
625
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
626
|
+
return labels
|
640
627
|
else:
|
641
628
|
raise NotImplementedError
|
642
629
|
|
@@ -672,6 +659,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
672
659
|
output_cols = []
|
673
660
|
|
674
661
|
# Make sure column names are valid snowflake identifiers.
|
662
|
+
assert output_cols is not None # Make MyPy happy
|
675
663
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
676
664
|
|
677
665
|
return rv
|
@@ -682,11 +670,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
682
670
|
subproject=_SUBPROJECT,
|
683
671
|
custom_tags=dict([("autogen", True)]),
|
684
672
|
)
|
685
|
-
@telemetry.add_stmt_params_to_df(
|
686
|
-
project=_PROJECT,
|
687
|
-
subproject=_SUBPROJECT,
|
688
|
-
custom_tags=dict([("autogen", True)]),
|
689
|
-
)
|
690
673
|
def predict_proba(
|
691
674
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
692
675
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -727,11 +710,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
727
710
|
subproject=_SUBPROJECT,
|
728
711
|
custom_tags=dict([("autogen", True)]),
|
729
712
|
)
|
730
|
-
@telemetry.add_stmt_params_to_df(
|
731
|
-
project=_PROJECT,
|
732
|
-
subproject=_SUBPROJECT,
|
733
|
-
custom_tags=dict([("autogen", True)]),
|
734
|
-
)
|
735
713
|
def predict_log_proba(
|
736
714
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
737
715
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -768,16 +746,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
768
746
|
return output_df
|
769
747
|
|
770
748
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
771
|
-
@telemetry.send_api_usage_telemetry(
|
772
|
-
project=_PROJECT,
|
773
|
-
subproject=_SUBPROJECT,
|
774
|
-
custom_tags=dict([("autogen", True)]),
|
775
|
-
)
|
776
|
-
@telemetry.add_stmt_params_to_df(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
749
|
def decision_function(
|
782
750
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
783
751
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -878,11 +846,6 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
878
846
|
subproject=_SUBPROJECT,
|
879
847
|
custom_tags=dict([("autogen", True)]),
|
880
848
|
)
|
881
|
-
@telemetry.add_stmt_params_to_df(
|
882
|
-
project=_PROJECT,
|
883
|
-
subproject=_SUBPROJECT,
|
884
|
-
custom_tags=dict([("autogen", True)]),
|
885
|
-
)
|
886
849
|
def kneighbors(
|
887
850
|
self,
|
888
851
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -942,18 +905,28 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
942
905
|
# For classifier, the type of predict is the same as the type of label
|
943
906
|
if self._sklearn_object._estimator_type == 'classifier':
|
944
907
|
# label columns is the desired type for output
|
945
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
908
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
946
909
|
# rename the output columns
|
947
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
910
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
948
911
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
949
912
|
([] if self._drop_input_cols else inputs)
|
950
913
|
+ outputs)
|
914
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
915
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
916
|
+
# Clusterer returns int64 cluster labels.
|
917
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
918
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
919
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
|
+
([] if self._drop_input_cols else inputs)
|
921
|
+
+ outputs)
|
922
|
+
|
951
923
|
# For regressor, the type of predict is float64
|
952
924
|
elif self._sklearn_object._estimator_type == 'regressor':
|
953
925
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
954
926
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
955
927
|
([] if self._drop_input_cols else inputs)
|
956
928
|
+ outputs)
|
929
|
+
|
957
930
|
for prob_func in PROB_FUNCTIONS:
|
958
931
|
if hasattr(self, prob_func):
|
959
932
|
output_cols_prefix: str = f"{prob_func}_"
|