snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultiTaskLassoCV(BaseTransformer):
57
58
  r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
58
59
  For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
@@ -60,6 +61,51 @@ class MultiTaskLassoCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  eps: float, default=1e-3
64
110
  Length of the path. ``eps=1e-3`` means that
65
111
  ``alpha_min / alpha_max = 1e-3``.
@@ -123,35 +169,6 @@ class MultiTaskLassoCV(BaseTransformer):
123
169
  rather than looping over features sequentially by default. This
124
170
  (setting to 'random') often leads to significantly faster convergence
125
171
  especially when tol is higher than 1e-4.
126
-
127
- input_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that contain features.
129
- If this parameter is not specified, all columns in the input DataFrame except
130
- the columns specified by label_cols and sample_weight_col parameters are
131
- considered input columns.
132
-
133
- label_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that contain labels.
135
- This is a required param for estimators, as there is no way to infer these
136
- columns. If this parameter is not specified, then object is fitted without
137
- labels (like a transformer).
138
-
139
- output_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that will store the
141
- output of predict and transform operations. The length of output_cols must
142
- match the expected number of output columns from the specific estimator or
143
- transformer class used.
144
- If this parameter is not specified, output column names are derived by
145
- adding an OUTPUT_ prefix to the label column names. These inferred output
146
- column names work for estimator's predict() method, but output_cols must
147
- be set explicitly for transformers.
148
-
149
- sample_weight_col: Optional[str]
150
- A string representing the column name containing the sample weights.
151
- This argument is only required when working with weighted datasets.
152
-
153
- drop_input_cols: Optional[bool], default=False
154
- If set, the response of predict(), transform() methods will not contain input columns.
155
172
  """
156
173
 
157
174
  def __init__( # type: ignore[no-untyped-def]
@@ -172,6 +189,7 @@ class MultiTaskLassoCV(BaseTransformer):
172
189
  input_cols: Optional[Union[str, Iterable[str]]] = None,
173
190
  output_cols: Optional[Union[str, Iterable[str]]] = None,
174
191
  label_cols: Optional[Union[str, Iterable[str]]] = None,
192
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
175
193
  drop_input_cols: Optional[bool] = False,
176
194
  sample_weight_col: Optional[str] = None,
177
195
  ) -> None:
@@ -180,9 +198,10 @@ class MultiTaskLassoCV(BaseTransformer):
180
198
  self.set_input_cols(input_cols)
181
199
  self.set_output_cols(output_cols)
182
200
  self.set_label_cols(label_cols)
201
+ self.set_passthrough_cols(passthrough_cols)
183
202
  self.set_drop_input_cols(drop_input_cols)
184
203
  self.set_sample_weight_col(sample_weight_col)
185
- deps = set(SklearnWrapperProvider().dependencies)
204
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
186
205
 
187
206
  self._deps = list(deps)
188
207
 
@@ -202,13 +221,14 @@ class MultiTaskLassoCV(BaseTransformer):
202
221
  args=init_args,
203
222
  klass=sklearn.linear_model.MultiTaskLassoCV
204
223
  )
205
- self._sklearn_object = sklearn.linear_model.MultiTaskLassoCV(
224
+ self._sklearn_object: Any = sklearn.linear_model.MultiTaskLassoCV(
206
225
  **cleaned_up_init_args,
207
226
  )
208
227
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
209
228
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
210
229
  self._snowpark_cols: Optional[List[str]] = self.input_cols
211
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
230
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
231
+ self._autogenerated = True
212
232
 
213
233
  def _get_rand_id(self) -> str:
214
234
  """
@@ -219,24 +239,6 @@ class MultiTaskLassoCV(BaseTransformer):
219
239
  """
220
240
  return str(uuid4()).replace("-", "_").upper()
221
241
 
222
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
223
- """
224
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
225
-
226
- Args:
227
- dataset: Input dataset.
228
- """
229
- if not self.input_cols:
230
- cols = [
231
- c for c in dataset.columns
232
- if c not in self.get_label_cols() and c != self.sample_weight_col
233
- ]
234
- self.set_input_cols(input_cols=cols)
235
-
236
- if not self.output_cols:
237
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
238
- self.set_output_cols(output_cols=cols)
239
-
240
242
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultiTaskLassoCV":
241
243
  """
242
244
  Input columns setter.
@@ -282,54 +284,48 @@ class MultiTaskLassoCV(BaseTransformer):
282
284
  self
283
285
  """
284
286
  self._infer_input_output_cols(dataset)
285
- if isinstance(dataset, pd.DataFrame):
286
- assert self._sklearn_object is not None # keep mypy happy
287
- self._sklearn_object = self._handlers.fit_pandas(
288
- dataset,
289
- self._sklearn_object,
290
- self.input_cols,
291
- self.label_cols,
292
- self.sample_weight_col
293
- )
294
- elif isinstance(dataset, DataFrame):
295
- self._fit_snowpark(dataset)
296
- else:
297
- raise TypeError(
298
- f"Unexpected dataset type: {type(dataset)}."
299
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
300
- )
287
+ if isinstance(dataset, DataFrame):
288
+ session = dataset._session
289
+ assert session is not None # keep mypy happy
290
+ # Validate that key package version in user workspace are supported in snowflake conda channel
291
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
292
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
293
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
294
+
295
+ # Specify input columns so column pruning will be enforced
296
+ selected_cols = self._get_active_columns()
297
+ if len(selected_cols) > 0:
298
+ dataset = dataset.select(selected_cols)
299
+
300
+ self._snowpark_cols = dataset.select(self.input_cols).columns
301
+
302
+ # If we are already in a stored procedure, no need to kick off another one.
303
+ if SNOWML_SPROC_ENV in os.environ:
304
+ statement_params = telemetry.get_function_usage_statement_params(
305
+ project=_PROJECT,
306
+ subproject=_SUBPROJECT,
307
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
308
+ api_calls=[Session.call],
309
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
310
+ )
311
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
312
+ pd_df.columns = dataset.columns
313
+ dataset = pd_df
314
+
315
+ model_trainer = ModelTrainerBuilder.build(
316
+ estimator=self._sklearn_object,
317
+ dataset=dataset,
318
+ input_cols=self.input_cols,
319
+ label_cols=self.label_cols,
320
+ sample_weight_col=self.sample_weight_col,
321
+ autogenerated=self._autogenerated,
322
+ subproject=_SUBPROJECT
323
+ )
324
+ self._sklearn_object = model_trainer.train()
301
325
  self._is_fitted = True
302
326
  self._get_model_signatures(dataset)
303
327
  return self
304
328
 
305
- def _fit_snowpark(self, dataset: DataFrame) -> None:
306
- session = dataset._session
307
- assert session is not None # keep mypy happy
308
- # Validate that key package version in user workspace are supported in snowflake conda channel
309
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
310
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
311
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
312
-
313
- # Specify input columns so column pruning will be enforced
314
- selected_cols = self._get_active_columns()
315
- if len(selected_cols) > 0:
316
- dataset = dataset.select(selected_cols)
317
-
318
- estimator = self._sklearn_object
319
- assert estimator is not None # Keep mypy happy
320
-
321
- self._snowpark_cols = dataset.select(self.input_cols).columns
322
-
323
- self._sklearn_object = self._handlers.fit_snowpark(
324
- dataset,
325
- session,
326
- estimator,
327
- ["snowflake-snowpark-python"] + self._get_dependencies(),
328
- self.input_cols,
329
- self.label_cols,
330
- self.sample_weight_col,
331
- )
332
-
333
329
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
334
330
  if self._drop_input_cols:
335
331
  return []
@@ -517,11 +513,6 @@ class MultiTaskLassoCV(BaseTransformer):
517
513
  subproject=_SUBPROJECT,
518
514
  custom_tags=dict([("autogen", True)]),
519
515
  )
520
- @telemetry.add_stmt_params_to_df(
521
- project=_PROJECT,
522
- subproject=_SUBPROJECT,
523
- custom_tags=dict([("autogen", True)]),
524
- )
525
516
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
526
517
  """Predict using the linear model
527
518
  For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.predict]
@@ -575,11 +566,6 @@ class MultiTaskLassoCV(BaseTransformer):
575
566
  subproject=_SUBPROJECT,
576
567
  custom_tags=dict([("autogen", True)]),
577
568
  )
578
- @telemetry.add_stmt_params_to_df(
579
- project=_PROJECT,
580
- subproject=_SUBPROJECT,
581
- custom_tags=dict([("autogen", True)]),
582
- )
583
569
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
584
570
  """Method not supported for this class.
585
571
 
@@ -636,7 +622,8 @@ class MultiTaskLassoCV(BaseTransformer):
636
622
  if False:
637
623
  self.fit(dataset)
638
624
  assert self._sklearn_object is not None
639
- return self._sklearn_object.labels_
625
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
626
+ return labels
640
627
  else:
641
628
  raise NotImplementedError
642
629
 
@@ -672,6 +659,7 @@ class MultiTaskLassoCV(BaseTransformer):
672
659
  output_cols = []
673
660
 
674
661
  # Make sure column names are valid snowflake identifiers.
662
+ assert output_cols is not None # Make MyPy happy
675
663
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
676
664
 
677
665
  return rv
@@ -682,11 +670,6 @@ class MultiTaskLassoCV(BaseTransformer):
682
670
  subproject=_SUBPROJECT,
683
671
  custom_tags=dict([("autogen", True)]),
684
672
  )
685
- @telemetry.add_stmt_params_to_df(
686
- project=_PROJECT,
687
- subproject=_SUBPROJECT,
688
- custom_tags=dict([("autogen", True)]),
689
- )
690
673
  def predict_proba(
691
674
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
692
675
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -727,11 +710,6 @@ class MultiTaskLassoCV(BaseTransformer):
727
710
  subproject=_SUBPROJECT,
728
711
  custom_tags=dict([("autogen", True)]),
729
712
  )
730
- @telemetry.add_stmt_params_to_df(
731
- project=_PROJECT,
732
- subproject=_SUBPROJECT,
733
- custom_tags=dict([("autogen", True)]),
734
- )
735
713
  def predict_log_proba(
736
714
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
737
715
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -768,16 +746,6 @@ class MultiTaskLassoCV(BaseTransformer):
768
746
  return output_df
769
747
 
770
748
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
771
- @telemetry.send_api_usage_telemetry(
772
- project=_PROJECT,
773
- subproject=_SUBPROJECT,
774
- custom_tags=dict([("autogen", True)]),
775
- )
776
- @telemetry.add_stmt_params_to_df(
777
- project=_PROJECT,
778
- subproject=_SUBPROJECT,
779
- custom_tags=dict([("autogen", True)]),
780
- )
781
749
  def decision_function(
782
750
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
783
751
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -878,11 +846,6 @@ class MultiTaskLassoCV(BaseTransformer):
878
846
  subproject=_SUBPROJECT,
879
847
  custom_tags=dict([("autogen", True)]),
880
848
  )
881
- @telemetry.add_stmt_params_to_df(
882
- project=_PROJECT,
883
- subproject=_SUBPROJECT,
884
- custom_tags=dict([("autogen", True)]),
885
- )
886
849
  def kneighbors(
887
850
  self,
888
851
  dataset: Union[DataFrame, pd.DataFrame],
@@ -942,18 +905,28 @@ class MultiTaskLassoCV(BaseTransformer):
942
905
  # For classifier, the type of predict is the same as the type of label
943
906
  if self._sklearn_object._estimator_type == 'classifier':
944
907
  # label columns is the desired type for output
945
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
908
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
909
  # rename the output columns
947
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
910
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
911
  self._model_signature_dict["predict"] = ModelSignature(inputs,
949
912
  ([] if self._drop_input_cols else inputs)
950
913
  + outputs)
914
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
915
+ # For outlier models, returns -1 for outliers and 1 for inliers.
916
+ # Clusterer returns int64 cluster labels.
917
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
918
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
919
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
920
+ ([] if self._drop_input_cols else inputs)
921
+ + outputs)
922
+
951
923
  # For regressor, the type of predict is float64
952
924
  elif self._sklearn_object._estimator_type == 'regressor':
953
925
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
954
926
  self._model_signature_dict["predict"] = ModelSignature(inputs,
955
927
  ([] if self._drop_input_cols else inputs)
956
928
  + outputs)
929
+
957
930
  for prob_func in PROB_FUNCTIONS:
958
931
  if hasattr(self, prob_func):
959
932
  output_cols_prefix: str = f"{prob_func}_"