snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Lars(BaseTransformer):
57
58
  r"""Least Angle Regression model a
58
59
  For more details on this class, see [sklearn.linear_model.Lars]
@@ -60,6 +61,51 @@ class Lars(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations
@@ -109,35 +155,6 @@ class Lars(BaseTransformer):
109
155
  Determines random number generation for jittering. Pass an int
110
156
  for reproducible output across multiple function calls.
111
157
  See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols and sample_weight_col parameters are
117
- considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- drop_input_cols: Optional[bool], default=False
140
- If set, the response of predict(), transform() methods will not contain input columns.
141
158
  """
142
159
 
143
160
  def __init__( # type: ignore[no-untyped-def]
@@ -156,6 +173,7 @@ class Lars(BaseTransformer):
156
173
  input_cols: Optional[Union[str, Iterable[str]]] = None,
157
174
  output_cols: Optional[Union[str, Iterable[str]]] = None,
158
175
  label_cols: Optional[Union[str, Iterable[str]]] = None,
176
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
159
177
  drop_input_cols: Optional[bool] = False,
160
178
  sample_weight_col: Optional[str] = None,
161
179
  ) -> None:
@@ -164,9 +182,10 @@ class Lars(BaseTransformer):
164
182
  self.set_input_cols(input_cols)
165
183
  self.set_output_cols(output_cols)
166
184
  self.set_label_cols(label_cols)
185
+ self.set_passthrough_cols(passthrough_cols)
167
186
  self.set_drop_input_cols(drop_input_cols)
168
187
  self.set_sample_weight_col(sample_weight_col)
169
- deps = set(SklearnWrapperProvider().dependencies)
188
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
170
189
 
171
190
  self._deps = list(deps)
172
191
 
@@ -184,13 +203,14 @@ class Lars(BaseTransformer):
184
203
  args=init_args,
185
204
  klass=sklearn.linear_model.Lars
186
205
  )
187
- self._sklearn_object = sklearn.linear_model.Lars(
206
+ self._sklearn_object: Any = sklearn.linear_model.Lars(
188
207
  **cleaned_up_init_args,
189
208
  )
190
209
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
191
210
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
192
211
  self._snowpark_cols: Optional[List[str]] = self.input_cols
193
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
212
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
+ self._autogenerated = True
194
214
 
195
215
  def _get_rand_id(self) -> str:
196
216
  """
@@ -201,24 +221,6 @@ class Lars(BaseTransformer):
201
221
  """
202
222
  return str(uuid4()).replace("-", "_").upper()
203
223
 
204
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
205
- """
206
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
207
-
208
- Args:
209
- dataset: Input dataset.
210
- """
211
- if not self.input_cols:
212
- cols = [
213
- c for c in dataset.columns
214
- if c not in self.get_label_cols() and c != self.sample_weight_col
215
- ]
216
- self.set_input_cols(input_cols=cols)
217
-
218
- if not self.output_cols:
219
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
220
- self.set_output_cols(output_cols=cols)
221
-
222
224
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Lars":
223
225
  """
224
226
  Input columns setter.
@@ -264,54 +266,48 @@ class Lars(BaseTransformer):
264
266
  self
265
267
  """
266
268
  self._infer_input_output_cols(dataset)
267
- if isinstance(dataset, pd.DataFrame):
268
- assert self._sklearn_object is not None # keep mypy happy
269
- self._sklearn_object = self._handlers.fit_pandas(
270
- dataset,
271
- self._sklearn_object,
272
- self.input_cols,
273
- self.label_cols,
274
- self.sample_weight_col
275
- )
276
- elif isinstance(dataset, DataFrame):
277
- self._fit_snowpark(dataset)
278
- else:
279
- raise TypeError(
280
- f"Unexpected dataset type: {type(dataset)}."
281
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
282
- )
269
+ if isinstance(dataset, DataFrame):
270
+ session = dataset._session
271
+ assert session is not None # keep mypy happy
272
+ # Validate that key package version in user workspace are supported in snowflake conda channel
273
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
274
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
275
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
276
+
277
+ # Specify input columns so column pruning will be enforced
278
+ selected_cols = self._get_active_columns()
279
+ if len(selected_cols) > 0:
280
+ dataset = dataset.select(selected_cols)
281
+
282
+ self._snowpark_cols = dataset.select(self.input_cols).columns
283
+
284
+ # If we are already in a stored procedure, no need to kick off another one.
285
+ if SNOWML_SPROC_ENV in os.environ:
286
+ statement_params = telemetry.get_function_usage_statement_params(
287
+ project=_PROJECT,
288
+ subproject=_SUBPROJECT,
289
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lars.__class__.__name__),
290
+ api_calls=[Session.call],
291
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
+ )
293
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
294
+ pd_df.columns = dataset.columns
295
+ dataset = pd_df
296
+
297
+ model_trainer = ModelTrainerBuilder.build(
298
+ estimator=self._sklearn_object,
299
+ dataset=dataset,
300
+ input_cols=self.input_cols,
301
+ label_cols=self.label_cols,
302
+ sample_weight_col=self.sample_weight_col,
303
+ autogenerated=self._autogenerated,
304
+ subproject=_SUBPROJECT
305
+ )
306
+ self._sklearn_object = model_trainer.train()
283
307
  self._is_fitted = True
284
308
  self._get_model_signatures(dataset)
285
309
  return self
286
310
 
287
- def _fit_snowpark(self, dataset: DataFrame) -> None:
288
- session = dataset._session
289
- assert session is not None # keep mypy happy
290
- # Validate that key package version in user workspace are supported in snowflake conda channel
291
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
292
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
293
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
294
-
295
- # Specify input columns so column pruning will be enforced
296
- selected_cols = self._get_active_columns()
297
- if len(selected_cols) > 0:
298
- dataset = dataset.select(selected_cols)
299
-
300
- estimator = self._sklearn_object
301
- assert estimator is not None # Keep mypy happy
302
-
303
- self._snowpark_cols = dataset.select(self.input_cols).columns
304
-
305
- self._sklearn_object = self._handlers.fit_snowpark(
306
- dataset,
307
- session,
308
- estimator,
309
- ["snowflake-snowpark-python"] + self._get_dependencies(),
310
- self.input_cols,
311
- self.label_cols,
312
- self.sample_weight_col,
313
- )
314
-
315
311
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
316
312
  if self._drop_input_cols:
317
313
  return []
@@ -499,11 +495,6 @@ class Lars(BaseTransformer):
499
495
  subproject=_SUBPROJECT,
500
496
  custom_tags=dict([("autogen", True)]),
501
497
  )
502
- @telemetry.add_stmt_params_to_df(
503
- project=_PROJECT,
504
- subproject=_SUBPROJECT,
505
- custom_tags=dict([("autogen", True)]),
506
- )
507
498
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
508
499
  """Predict using the linear model
509
500
  For more details on this function, see [sklearn.linear_model.Lars.predict]
@@ -557,11 +548,6 @@ class Lars(BaseTransformer):
557
548
  subproject=_SUBPROJECT,
558
549
  custom_tags=dict([("autogen", True)]),
559
550
  )
560
- @telemetry.add_stmt_params_to_df(
561
- project=_PROJECT,
562
- subproject=_SUBPROJECT,
563
- custom_tags=dict([("autogen", True)]),
564
- )
565
551
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
566
552
  """Method not supported for this class.
567
553
 
@@ -618,7 +604,8 @@ class Lars(BaseTransformer):
618
604
  if False:
619
605
  self.fit(dataset)
620
606
  assert self._sklearn_object is not None
621
- return self._sklearn_object.labels_
607
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
608
+ return labels
622
609
  else:
623
610
  raise NotImplementedError
624
611
 
@@ -654,6 +641,7 @@ class Lars(BaseTransformer):
654
641
  output_cols = []
655
642
 
656
643
  # Make sure column names are valid snowflake identifiers.
644
+ assert output_cols is not None # Make MyPy happy
657
645
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
658
646
 
659
647
  return rv
@@ -664,11 +652,6 @@ class Lars(BaseTransformer):
664
652
  subproject=_SUBPROJECT,
665
653
  custom_tags=dict([("autogen", True)]),
666
654
  )
667
- @telemetry.add_stmt_params_to_df(
668
- project=_PROJECT,
669
- subproject=_SUBPROJECT,
670
- custom_tags=dict([("autogen", True)]),
671
- )
672
655
  def predict_proba(
673
656
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
674
657
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -709,11 +692,6 @@ class Lars(BaseTransformer):
709
692
  subproject=_SUBPROJECT,
710
693
  custom_tags=dict([("autogen", True)]),
711
694
  )
712
- @telemetry.add_stmt_params_to_df(
713
- project=_PROJECT,
714
- subproject=_SUBPROJECT,
715
- custom_tags=dict([("autogen", True)]),
716
- )
717
695
  def predict_log_proba(
718
696
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
719
697
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -750,16 +728,6 @@ class Lars(BaseTransformer):
750
728
  return output_df
751
729
 
752
730
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
753
- @telemetry.send_api_usage_telemetry(
754
- project=_PROJECT,
755
- subproject=_SUBPROJECT,
756
- custom_tags=dict([("autogen", True)]),
757
- )
758
- @telemetry.add_stmt_params_to_df(
759
- project=_PROJECT,
760
- subproject=_SUBPROJECT,
761
- custom_tags=dict([("autogen", True)]),
762
- )
763
731
  def decision_function(
764
732
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
765
733
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -860,11 +828,6 @@ class Lars(BaseTransformer):
860
828
  subproject=_SUBPROJECT,
861
829
  custom_tags=dict([("autogen", True)]),
862
830
  )
863
- @telemetry.add_stmt_params_to_df(
864
- project=_PROJECT,
865
- subproject=_SUBPROJECT,
866
- custom_tags=dict([("autogen", True)]),
867
- )
868
831
  def kneighbors(
869
832
  self,
870
833
  dataset: Union[DataFrame, pd.DataFrame],
@@ -924,18 +887,28 @@ class Lars(BaseTransformer):
924
887
  # For classifier, the type of predict is the same as the type of label
925
888
  if self._sklearn_object._estimator_type == 'classifier':
926
889
  # label columns is the desired type for output
927
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
890
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
928
891
  # rename the output columns
929
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
892
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
930
893
  self._model_signature_dict["predict"] = ModelSignature(inputs,
931
894
  ([] if self._drop_input_cols else inputs)
932
895
  + outputs)
896
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
897
+ # For outlier models, returns -1 for outliers and 1 for inliers.
898
+ # Clusterer returns int64 cluster labels.
899
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
900
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
901
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
902
+ ([] if self._drop_input_cols else inputs)
903
+ + outputs)
904
+
933
905
  # For regressor, the type of predict is float64
934
906
  elif self._sklearn_object._estimator_type == 'regressor':
935
907
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
936
908
  self._model_signature_dict["predict"] = ModelSignature(inputs,
937
909
  ([] if self._drop_input_cols else inputs)
938
910
  + outputs)
911
+
939
912
  for prob_func in PROB_FUNCTIONS:
940
913
  if hasattr(self, prob_func):
941
914
  output_cols_prefix: str = f"{prob_func}_"