snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PCA(BaseTransformer):
|
57
58
|
r"""Principal component analysis (PCA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.PCA]
|
@@ -60,6 +61,49 @@ class PCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, float or 'mle', default=None
|
64
108
|
Number of components to keep.
|
65
109
|
if n_components is not set all components are kept::
|
@@ -138,35 +182,6 @@ class PCA(BaseTransformer):
|
|
138
182
|
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
|
139
183
|
for reproducible results across multiple function calls.
|
140
184
|
See :term:`Glossary <random_state>`.
|
141
|
-
|
142
|
-
input_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain features.
|
144
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
145
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
146
|
-
considered input columns.
|
147
|
-
|
148
|
-
label_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that contain labels.
|
150
|
-
This is a required param for estimators, as there is no way to infer these
|
151
|
-
columns. If this parameter is not specified, then object is fitted without
|
152
|
-
labels (like a transformer).
|
153
|
-
|
154
|
-
output_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or list of strings representing column names that will store the
|
156
|
-
output of predict and transform operations. The length of output_cols must
|
157
|
-
match the expected number of output columns from the specific estimator or
|
158
|
-
transformer class used.
|
159
|
-
If this parameter is not specified, output column names are derived by
|
160
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
161
|
-
column names work for estimator's predict() method, but output_cols must
|
162
|
-
be set explicitly for transformers.
|
163
|
-
|
164
|
-
sample_weight_col: Optional[str]
|
165
|
-
A string representing the column name containing the sample weights.
|
166
|
-
This argument is only required when working with weighted datasets.
|
167
|
-
|
168
|
-
drop_input_cols: Optional[bool], default=False
|
169
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
170
185
|
"""
|
171
186
|
|
172
187
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -184,6 +199,7 @@ class PCA(BaseTransformer):
|
|
184
199
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
185
200
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
186
201
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
202
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
187
203
|
drop_input_cols: Optional[bool] = False,
|
188
204
|
sample_weight_col: Optional[str] = None,
|
189
205
|
) -> None:
|
@@ -192,9 +208,10 @@ class PCA(BaseTransformer):
|
|
192
208
|
self.set_input_cols(input_cols)
|
193
209
|
self.set_output_cols(output_cols)
|
194
210
|
self.set_label_cols(label_cols)
|
211
|
+
self.set_passthrough_cols(passthrough_cols)
|
195
212
|
self.set_drop_input_cols(drop_input_cols)
|
196
213
|
self.set_sample_weight_col(sample_weight_col)
|
197
|
-
deps = set(
|
214
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
198
215
|
|
199
216
|
self._deps = list(deps)
|
200
217
|
|
@@ -211,13 +228,14 @@ class PCA(BaseTransformer):
|
|
211
228
|
args=init_args,
|
212
229
|
klass=sklearn.decomposition.PCA
|
213
230
|
)
|
214
|
-
self._sklearn_object = sklearn.decomposition.PCA(
|
231
|
+
self._sklearn_object: Any = sklearn.decomposition.PCA(
|
215
232
|
**cleaned_up_init_args,
|
216
233
|
)
|
217
234
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
218
235
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
219
236
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
220
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
237
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
238
|
+
self._autogenerated = True
|
221
239
|
|
222
240
|
def _get_rand_id(self) -> str:
|
223
241
|
"""
|
@@ -228,24 +246,6 @@ class PCA(BaseTransformer):
|
|
228
246
|
"""
|
229
247
|
return str(uuid4()).replace("-", "_").upper()
|
230
248
|
|
231
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
232
|
-
"""
|
233
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
234
|
-
|
235
|
-
Args:
|
236
|
-
dataset: Input dataset.
|
237
|
-
"""
|
238
|
-
if not self.input_cols:
|
239
|
-
cols = [
|
240
|
-
c for c in dataset.columns
|
241
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
242
|
-
]
|
243
|
-
self.set_input_cols(input_cols=cols)
|
244
|
-
|
245
|
-
if not self.output_cols:
|
246
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
247
|
-
self.set_output_cols(output_cols=cols)
|
248
|
-
|
249
249
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PCA":
|
250
250
|
"""
|
251
251
|
Input columns setter.
|
@@ -291,54 +291,48 @@ class PCA(BaseTransformer):
|
|
291
291
|
self
|
292
292
|
"""
|
293
293
|
self._infer_input_output_cols(dataset)
|
294
|
-
if isinstance(dataset,
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
self.
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
294
|
+
if isinstance(dataset, DataFrame):
|
295
|
+
session = dataset._session
|
296
|
+
assert session is not None # keep mypy happy
|
297
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
+
|
302
|
+
# Specify input columns so column pruning will be enforced
|
303
|
+
selected_cols = self._get_active_columns()
|
304
|
+
if len(selected_cols) > 0:
|
305
|
+
dataset = dataset.select(selected_cols)
|
306
|
+
|
307
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
+
|
309
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
310
|
+
if SNOWML_SPROC_ENV in os.environ:
|
311
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
312
|
+
project=_PROJECT,
|
313
|
+
subproject=_SUBPROJECT,
|
314
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PCA.__class__.__name__),
|
315
|
+
api_calls=[Session.call],
|
316
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
317
|
+
)
|
318
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
|
+
pd_df.columns = dataset.columns
|
320
|
+
dataset = pd_df
|
321
|
+
|
322
|
+
model_trainer = ModelTrainerBuilder.build(
|
323
|
+
estimator=self._sklearn_object,
|
324
|
+
dataset=dataset,
|
325
|
+
input_cols=self.input_cols,
|
326
|
+
label_cols=self.label_cols,
|
327
|
+
sample_weight_col=self.sample_weight_col,
|
328
|
+
autogenerated=self._autogenerated,
|
329
|
+
subproject=_SUBPROJECT
|
330
|
+
)
|
331
|
+
self._sklearn_object = model_trainer.train()
|
310
332
|
self._is_fitted = True
|
311
333
|
self._get_model_signatures(dataset)
|
312
334
|
return self
|
313
335
|
|
314
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
315
|
-
session = dataset._session
|
316
|
-
assert session is not None # keep mypy happy
|
317
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
318
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
319
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
320
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
321
|
-
|
322
|
-
# Specify input columns so column pruning will be enforced
|
323
|
-
selected_cols = self._get_active_columns()
|
324
|
-
if len(selected_cols) > 0:
|
325
|
-
dataset = dataset.select(selected_cols)
|
326
|
-
|
327
|
-
estimator = self._sklearn_object
|
328
|
-
assert estimator is not None # Keep mypy happy
|
329
|
-
|
330
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
331
|
-
|
332
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
333
|
-
dataset,
|
334
|
-
session,
|
335
|
-
estimator,
|
336
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
337
|
-
self.input_cols,
|
338
|
-
self.label_cols,
|
339
|
-
self.sample_weight_col,
|
340
|
-
)
|
341
|
-
|
342
336
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
343
337
|
if self._drop_input_cols:
|
344
338
|
return []
|
@@ -526,11 +520,6 @@ class PCA(BaseTransformer):
|
|
526
520
|
subproject=_SUBPROJECT,
|
527
521
|
custom_tags=dict([("autogen", True)]),
|
528
522
|
)
|
529
|
-
@telemetry.add_stmt_params_to_df(
|
530
|
-
project=_PROJECT,
|
531
|
-
subproject=_SUBPROJECT,
|
532
|
-
custom_tags=dict([("autogen", True)]),
|
533
|
-
)
|
534
523
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
535
524
|
"""Method not supported for this class.
|
536
525
|
|
@@ -582,11 +571,6 @@ class PCA(BaseTransformer):
|
|
582
571
|
subproject=_SUBPROJECT,
|
583
572
|
custom_tags=dict([("autogen", True)]),
|
584
573
|
)
|
585
|
-
@telemetry.add_stmt_params_to_df(
|
586
|
-
project=_PROJECT,
|
587
|
-
subproject=_SUBPROJECT,
|
588
|
-
custom_tags=dict([("autogen", True)]),
|
589
|
-
)
|
590
574
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
591
575
|
"""Apply dimensionality reduction to X
|
592
576
|
For more details on this function, see [sklearn.decomposition.PCA.transform]
|
@@ -645,7 +629,8 @@ class PCA(BaseTransformer):
|
|
645
629
|
if False:
|
646
630
|
self.fit(dataset)
|
647
631
|
assert self._sklearn_object is not None
|
648
|
-
|
632
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
633
|
+
return labels
|
649
634
|
else:
|
650
635
|
raise NotImplementedError
|
651
636
|
|
@@ -681,6 +666,7 @@ class PCA(BaseTransformer):
|
|
681
666
|
output_cols = []
|
682
667
|
|
683
668
|
# Make sure column names are valid snowflake identifiers.
|
669
|
+
assert output_cols is not None # Make MyPy happy
|
684
670
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
685
671
|
|
686
672
|
return rv
|
@@ -691,11 +677,6 @@ class PCA(BaseTransformer):
|
|
691
677
|
subproject=_SUBPROJECT,
|
692
678
|
custom_tags=dict([("autogen", True)]),
|
693
679
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
680
|
def predict_proba(
|
700
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
701
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -736,11 +717,6 @@ class PCA(BaseTransformer):
|
|
736
717
|
subproject=_SUBPROJECT,
|
737
718
|
custom_tags=dict([("autogen", True)]),
|
738
719
|
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
720
|
def predict_log_proba(
|
745
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
746
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -777,16 +753,6 @@ class PCA(BaseTransformer):
|
|
777
753
|
return output_df
|
778
754
|
|
779
755
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
780
|
-
@telemetry.send_api_usage_telemetry(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
756
|
def decision_function(
|
791
757
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
792
758
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -887,11 +853,6 @@ class PCA(BaseTransformer):
|
|
887
853
|
subproject=_SUBPROJECT,
|
888
854
|
custom_tags=dict([("autogen", True)]),
|
889
855
|
)
|
890
|
-
@telemetry.add_stmt_params_to_df(
|
891
|
-
project=_PROJECT,
|
892
|
-
subproject=_SUBPROJECT,
|
893
|
-
custom_tags=dict([("autogen", True)]),
|
894
|
-
)
|
895
856
|
def kneighbors(
|
896
857
|
self,
|
897
858
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -951,18 +912,28 @@ class PCA(BaseTransformer):
|
|
951
912
|
# For classifier, the type of predict is the same as the type of label
|
952
913
|
if self._sklearn_object._estimator_type == 'classifier':
|
953
914
|
# label columns is the desired type for output
|
954
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
915
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
955
916
|
# rename the output columns
|
956
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
917
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
918
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
919
|
+
([] if self._drop_input_cols else inputs)
|
920
|
+
+ outputs)
|
921
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
922
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
923
|
+
# Clusterer returns int64 cluster labels.
|
924
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
925
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
957
926
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
958
927
|
([] if self._drop_input_cols else inputs)
|
959
928
|
+ outputs)
|
929
|
+
|
960
930
|
# For regressor, the type of predict is float64
|
961
931
|
elif self._sklearn_object._estimator_type == 'regressor':
|
962
932
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
963
933
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
964
934
|
([] if self._drop_input_cols else inputs)
|
965
935
|
+ outputs)
|
936
|
+
|
966
937
|
for prob_func in PROB_FUNCTIONS:
|
967
938
|
if hasattr(self, prob_func):
|
968
939
|
output_cols_prefix: str = f"{prob_func}_"
|