snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MLPRegressor(BaseTransformer):
|
57
58
|
r"""Multi-layer Perceptron regressor
|
58
59
|
For more details on this class, see [sklearn.neural_network.MLPRegressor]
|
@@ -60,6 +61,51 @@ class MLPRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
|
64
110
|
The ith element represents the number of neurons in the ith
|
65
111
|
hidden layer.
|
@@ -205,35 +251,6 @@ class MLPRegressor(BaseTransformer):
|
|
205
251
|
of iterations reaches max_iter, or this number of function calls.
|
206
252
|
Note that number of function calls will be greater than or equal to
|
207
253
|
the number of iterations for the MLPRegressor.
|
208
|
-
|
209
|
-
input_cols: Optional[Union[str, List[str]]]
|
210
|
-
A string or list of strings representing column names that contain features.
|
211
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
212
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
213
|
-
considered input columns.
|
214
|
-
|
215
|
-
label_cols: Optional[Union[str, List[str]]]
|
216
|
-
A string or list of strings representing column names that contain labels.
|
217
|
-
This is a required param for estimators, as there is no way to infer these
|
218
|
-
columns. If this parameter is not specified, then object is fitted without
|
219
|
-
labels (like a transformer).
|
220
|
-
|
221
|
-
output_cols: Optional[Union[str, List[str]]]
|
222
|
-
A string or list of strings representing column names that will store the
|
223
|
-
output of predict and transform operations. The length of output_cols must
|
224
|
-
match the expected number of output columns from the specific estimator or
|
225
|
-
transformer class used.
|
226
|
-
If this parameter is not specified, output column names are derived by
|
227
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
228
|
-
column names work for estimator's predict() method, but output_cols must
|
229
|
-
be set explicitly for transformers.
|
230
|
-
|
231
|
-
sample_weight_col: Optional[str]
|
232
|
-
A string representing the column name containing the sample weights.
|
233
|
-
This argument is only required when working with weighted datasets.
|
234
|
-
|
235
|
-
drop_input_cols: Optional[bool], default=False
|
236
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
237
254
|
"""
|
238
255
|
|
239
256
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -265,6 +282,7 @@ class MLPRegressor(BaseTransformer):
|
|
265
282
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
266
283
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
267
284
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
285
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
268
286
|
drop_input_cols: Optional[bool] = False,
|
269
287
|
sample_weight_col: Optional[str] = None,
|
270
288
|
) -> None:
|
@@ -273,9 +291,10 @@ class MLPRegressor(BaseTransformer):
|
|
273
291
|
self.set_input_cols(input_cols)
|
274
292
|
self.set_output_cols(output_cols)
|
275
293
|
self.set_label_cols(label_cols)
|
294
|
+
self.set_passthrough_cols(passthrough_cols)
|
276
295
|
self.set_drop_input_cols(drop_input_cols)
|
277
296
|
self.set_sample_weight_col(sample_weight_col)
|
278
|
-
deps = set(
|
297
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
279
298
|
|
280
299
|
self._deps = list(deps)
|
281
300
|
|
@@ -306,13 +325,14 @@ class MLPRegressor(BaseTransformer):
|
|
306
325
|
args=init_args,
|
307
326
|
klass=sklearn.neural_network.MLPRegressor
|
308
327
|
)
|
309
|
-
self._sklearn_object = sklearn.neural_network.MLPRegressor(
|
328
|
+
self._sklearn_object: Any = sklearn.neural_network.MLPRegressor(
|
310
329
|
**cleaned_up_init_args,
|
311
330
|
)
|
312
331
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
313
332
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
314
333
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
315
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
334
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
335
|
+
self._autogenerated = True
|
316
336
|
|
317
337
|
def _get_rand_id(self) -> str:
|
318
338
|
"""
|
@@ -323,24 +343,6 @@ class MLPRegressor(BaseTransformer):
|
|
323
343
|
"""
|
324
344
|
return str(uuid4()).replace("-", "_").upper()
|
325
345
|
|
326
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
327
|
-
"""
|
328
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
329
|
-
|
330
|
-
Args:
|
331
|
-
dataset: Input dataset.
|
332
|
-
"""
|
333
|
-
if not self.input_cols:
|
334
|
-
cols = [
|
335
|
-
c for c in dataset.columns
|
336
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
337
|
-
]
|
338
|
-
self.set_input_cols(input_cols=cols)
|
339
|
-
|
340
|
-
if not self.output_cols:
|
341
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
342
|
-
self.set_output_cols(output_cols=cols)
|
343
|
-
|
344
346
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MLPRegressor":
|
345
347
|
"""
|
346
348
|
Input columns setter.
|
@@ -386,54 +388,48 @@ class MLPRegressor(BaseTransformer):
|
|
386
388
|
self
|
387
389
|
"""
|
388
390
|
self._infer_input_output_cols(dataset)
|
389
|
-
if isinstance(dataset,
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
self.
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
391
|
+
if isinstance(dataset, DataFrame):
|
392
|
+
session = dataset._session
|
393
|
+
assert session is not None # keep mypy happy
|
394
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
395
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
396
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
397
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
398
|
+
|
399
|
+
# Specify input columns so column pruning will be enforced
|
400
|
+
selected_cols = self._get_active_columns()
|
401
|
+
if len(selected_cols) > 0:
|
402
|
+
dataset = dataset.select(selected_cols)
|
403
|
+
|
404
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
405
|
+
|
406
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
407
|
+
if SNOWML_SPROC_ENV in os.environ:
|
408
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
409
|
+
project=_PROJECT,
|
410
|
+
subproject=_SUBPROJECT,
|
411
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPRegressor.__class__.__name__),
|
412
|
+
api_calls=[Session.call],
|
413
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
414
|
+
)
|
415
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
416
|
+
pd_df.columns = dataset.columns
|
417
|
+
dataset = pd_df
|
418
|
+
|
419
|
+
model_trainer = ModelTrainerBuilder.build(
|
420
|
+
estimator=self._sklearn_object,
|
421
|
+
dataset=dataset,
|
422
|
+
input_cols=self.input_cols,
|
423
|
+
label_cols=self.label_cols,
|
424
|
+
sample_weight_col=self.sample_weight_col,
|
425
|
+
autogenerated=self._autogenerated,
|
426
|
+
subproject=_SUBPROJECT
|
427
|
+
)
|
428
|
+
self._sklearn_object = model_trainer.train()
|
405
429
|
self._is_fitted = True
|
406
430
|
self._get_model_signatures(dataset)
|
407
431
|
return self
|
408
432
|
|
409
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
410
|
-
session = dataset._session
|
411
|
-
assert session is not None # keep mypy happy
|
412
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
413
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
414
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
415
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
416
|
-
|
417
|
-
# Specify input columns so column pruning will be enforced
|
418
|
-
selected_cols = self._get_active_columns()
|
419
|
-
if len(selected_cols) > 0:
|
420
|
-
dataset = dataset.select(selected_cols)
|
421
|
-
|
422
|
-
estimator = self._sklearn_object
|
423
|
-
assert estimator is not None # Keep mypy happy
|
424
|
-
|
425
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
426
|
-
|
427
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
428
|
-
dataset,
|
429
|
-
session,
|
430
|
-
estimator,
|
431
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
432
|
-
self.input_cols,
|
433
|
-
self.label_cols,
|
434
|
-
self.sample_weight_col,
|
435
|
-
)
|
436
|
-
|
437
433
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
438
434
|
if self._drop_input_cols:
|
439
435
|
return []
|
@@ -621,11 +617,6 @@ class MLPRegressor(BaseTransformer):
|
|
621
617
|
subproject=_SUBPROJECT,
|
622
618
|
custom_tags=dict([("autogen", True)]),
|
623
619
|
)
|
624
|
-
@telemetry.add_stmt_params_to_df(
|
625
|
-
project=_PROJECT,
|
626
|
-
subproject=_SUBPROJECT,
|
627
|
-
custom_tags=dict([("autogen", True)]),
|
628
|
-
)
|
629
620
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
630
621
|
"""Predict using the multi-layer perceptron model
|
631
622
|
For more details on this function, see [sklearn.neural_network.MLPRegressor.predict]
|
@@ -679,11 +670,6 @@ class MLPRegressor(BaseTransformer):
|
|
679
670
|
subproject=_SUBPROJECT,
|
680
671
|
custom_tags=dict([("autogen", True)]),
|
681
672
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
673
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
688
674
|
"""Method not supported for this class.
|
689
675
|
|
@@ -740,7 +726,8 @@ class MLPRegressor(BaseTransformer):
|
|
740
726
|
if False:
|
741
727
|
self.fit(dataset)
|
742
728
|
assert self._sklearn_object is not None
|
743
|
-
|
729
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
730
|
+
return labels
|
744
731
|
else:
|
745
732
|
raise NotImplementedError
|
746
733
|
|
@@ -776,6 +763,7 @@ class MLPRegressor(BaseTransformer):
|
|
776
763
|
output_cols = []
|
777
764
|
|
778
765
|
# Make sure column names are valid snowflake identifiers.
|
766
|
+
assert output_cols is not None # Make MyPy happy
|
779
767
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
780
768
|
|
781
769
|
return rv
|
@@ -786,11 +774,6 @@ class MLPRegressor(BaseTransformer):
|
|
786
774
|
subproject=_SUBPROJECT,
|
787
775
|
custom_tags=dict([("autogen", True)]),
|
788
776
|
)
|
789
|
-
@telemetry.add_stmt_params_to_df(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
777
|
def predict_proba(
|
795
778
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
796
779
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -831,11 +814,6 @@ class MLPRegressor(BaseTransformer):
|
|
831
814
|
subproject=_SUBPROJECT,
|
832
815
|
custom_tags=dict([("autogen", True)]),
|
833
816
|
)
|
834
|
-
@telemetry.add_stmt_params_to_df(
|
835
|
-
project=_PROJECT,
|
836
|
-
subproject=_SUBPROJECT,
|
837
|
-
custom_tags=dict([("autogen", True)]),
|
838
|
-
)
|
839
817
|
def predict_log_proba(
|
840
818
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
841
819
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -872,16 +850,6 @@ class MLPRegressor(BaseTransformer):
|
|
872
850
|
return output_df
|
873
851
|
|
874
852
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
875
|
-
@telemetry.send_api_usage_telemetry(
|
876
|
-
project=_PROJECT,
|
877
|
-
subproject=_SUBPROJECT,
|
878
|
-
custom_tags=dict([("autogen", True)]),
|
879
|
-
)
|
880
|
-
@telemetry.add_stmt_params_to_df(
|
881
|
-
project=_PROJECT,
|
882
|
-
subproject=_SUBPROJECT,
|
883
|
-
custom_tags=dict([("autogen", True)]),
|
884
|
-
)
|
885
853
|
def decision_function(
|
886
854
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
887
855
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -982,11 +950,6 @@ class MLPRegressor(BaseTransformer):
|
|
982
950
|
subproject=_SUBPROJECT,
|
983
951
|
custom_tags=dict([("autogen", True)]),
|
984
952
|
)
|
985
|
-
@telemetry.add_stmt_params_to_df(
|
986
|
-
project=_PROJECT,
|
987
|
-
subproject=_SUBPROJECT,
|
988
|
-
custom_tags=dict([("autogen", True)]),
|
989
|
-
)
|
990
953
|
def kneighbors(
|
991
954
|
self,
|
992
955
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1046,18 +1009,28 @@ class MLPRegressor(BaseTransformer):
|
|
1046
1009
|
# For classifier, the type of predict is the same as the type of label
|
1047
1010
|
if self._sklearn_object._estimator_type == 'classifier':
|
1048
1011
|
# label columns is the desired type for output
|
1049
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1012
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1050
1013
|
# rename the output columns
|
1051
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1014
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1052
1015
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1053
1016
|
([] if self._drop_input_cols else inputs)
|
1054
1017
|
+ outputs)
|
1018
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1019
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1020
|
+
# Clusterer returns int64 cluster labels.
|
1021
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1022
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1023
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1024
|
+
([] if self._drop_input_cols else inputs)
|
1025
|
+
+ outputs)
|
1026
|
+
|
1055
1027
|
# For regressor, the type of predict is float64
|
1056
1028
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1057
1029
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1058
1030
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1059
1031
|
([] if self._drop_input_cols else inputs)
|
1060
1032
|
+ outputs)
|
1033
|
+
|
1061
1034
|
for prob_func in PROB_FUNCTIONS:
|
1062
1035
|
if hasattr(self, prob_func):
|
1063
1036
|
output_cols_prefix: str = f"{prob_func}_"
|
@@ -1,8 +1,4 @@
|
|
1
1
|
"""Disables the distributed implementation of Grid Search and Randomized Search CV"""
|
2
|
-
from snowflake.ml.modeling.
|
3
|
-
from snowflake.ml.modeling.model_selection.randomized_search_cv import (
|
4
|
-
RandomizedSearchCV,
|
5
|
-
)
|
2
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
6
3
|
|
7
|
-
|
8
|
-
RandomizedSearchCV._ENABLE_DISTRIBUTED = False
|
4
|
+
ModelTrainerBuilder._ENABLE_DISTRIBUTED = False
|
@@ -21,11 +21,25 @@ class Binarizer(base.BaseTransformer):
|
|
21
21
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html).
|
22
22
|
|
23
23
|
Args:
|
24
|
-
threshold:
|
25
|
-
|
26
|
-
|
24
|
+
threshold: float, default=0.0
|
25
|
+
Feature values below or equal to this are replaced by 0, above it by 1. Default values is 0.0.
|
26
|
+
|
27
|
+
input_cols: Optional[Union[str, Iterable[str]]], default=None
|
28
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be binarized.
|
29
|
+
|
30
|
+
output_cols: Optional[Union[str, Iterable[str]]], default=None
|
31
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
27
32
|
columns specified must match the number of input columns.
|
28
|
-
|
33
|
+
|
34
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]], default=None
|
35
|
+
A string or a list of strings indicating column names to be excluded from any
|
36
|
+
operations (such as train, transform, or inference). These specified column(s)
|
37
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
38
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
39
|
+
columns, like index columns, during training or inference.
|
40
|
+
|
41
|
+
drop_input_cols: Optional[bool], default=False
|
42
|
+
Remove input columns from output if set True. False by default.
|
29
43
|
"""
|
30
44
|
|
31
45
|
def __init__(
|
@@ -34,6 +48,7 @@ class Binarizer(base.BaseTransformer):
|
|
34
48
|
threshold: float = 0.0,
|
35
49
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
36
50
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
51
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
37
52
|
drop_input_cols: Optional[bool] = False,
|
38
53
|
) -> None:
|
39
54
|
"""
|
@@ -49,12 +64,18 @@ class Binarizer(base.BaseTransformer):
|
|
49
64
|
input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be binarized.
|
50
65
|
output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number
|
51
66
|
of columns specified must match the number of input columns.
|
67
|
+
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
68
|
+
operations (such as train, transform, or inference). These specified column(s)
|
69
|
+
will remain untouched throughout the process. This option is helful in scenarios
|
70
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
71
|
+
columns, like index columns, during in training or inference.
|
52
72
|
drop_input_cols: Remove input columns from output if set True. False by default.
|
53
73
|
"""
|
54
74
|
super().__init__(drop_input_cols=drop_input_cols)
|
55
75
|
self.threshold = threshold
|
56
76
|
self.set_input_cols(input_cols)
|
57
77
|
self.set_output_cols(output_cols)
|
78
|
+
self.set_passthrough_cols(passthrough_cols)
|
58
79
|
|
59
80
|
def _reset(self) -> None:
|
60
81
|
"""
|
@@ -96,10 +117,6 @@ class Binarizer(base.BaseTransformer):
|
|
96
117
|
project=base.PROJECT,
|
97
118
|
subproject=base.SUBPROJECT,
|
98
119
|
)
|
99
|
-
@telemetry.add_stmt_params_to_df(
|
100
|
-
project=base.PROJECT,
|
101
|
-
subproject=base.SUBPROJECT,
|
102
|
-
)
|
103
120
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
104
121
|
"""
|
105
122
|
Binarize the data. Map to 1 if it is strictly greater than the threshold, otherwise 0.
|
@@ -38,6 +38,7 @@ _SKLEARN_UNUSED_KEYWORDS = [
|
|
38
38
|
_SNOWML_ONLY_KEYWORDS = [
|
39
39
|
"input_cols",
|
40
40
|
"output_cols",
|
41
|
+
"passthrough_cols",
|
41
42
|
] # snowml only keywords not present in sklearn
|
42
43
|
|
43
44
|
_VALID_ENCODING_SCHEME = ["onehot", "onehot-dense", "ordinal"]
|
@@ -78,6 +79,12 @@ class KBinsDiscretizer(base.BaseTransformer):
|
|
78
79
|
output_cols: str or Iterable [column_name], default=None
|
79
80
|
Single or multiple output columns.
|
80
81
|
|
82
|
+
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
83
|
+
operations (such as train, transform, or inference). These specified column(s)
|
84
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
85
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
86
|
+
columns, like index columns, during training or inference.
|
87
|
+
|
81
88
|
drop_input_cols: boolean, default=False
|
82
89
|
Remove input columns from output if set True.
|
83
90
|
|
@@ -97,6 +104,7 @@ class KBinsDiscretizer(base.BaseTransformer):
|
|
97
104
|
strategy: str = "quantile",
|
98
105
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
99
106
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
107
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
100
108
|
drop_input_cols: Optional[bool] = False,
|
101
109
|
) -> None:
|
102
110
|
super().__init__(drop_input_cols=drop_input_cols)
|
@@ -105,6 +113,7 @@ class KBinsDiscretizer(base.BaseTransformer):
|
|
105
113
|
self.strategy = strategy
|
106
114
|
self.set_input_cols(input_cols)
|
107
115
|
self.set_output_cols(output_cols)
|
116
|
+
self.set_passthrough_cols(passthrough_cols)
|
108
117
|
|
109
118
|
def _enforce_params(self) -> None:
|
110
119
|
self.n_bins = self.n_bins if isinstance(self.n_bins, Iterable) else [self.n_bins] * len(self.input_cols)
|
@@ -168,10 +177,6 @@ class KBinsDiscretizer(base.BaseTransformer):
|
|
168
177
|
project=base.PROJECT,
|
169
178
|
subproject=base.SUBPROJECT,
|
170
179
|
)
|
171
|
-
@telemetry.add_stmt_params_to_df(
|
172
|
-
project=base.PROJECT,
|
173
|
-
subproject=base.SUBPROJECT,
|
174
|
-
)
|
175
180
|
def transform(
|
176
181
|
self, dataset: Union[snowpark.DataFrame, pd.DataFrame]
|
177
182
|
) -> Union[snowpark.DataFrame, pd.DataFrame, sparse.csr_matrix]:
|
@@ -24,30 +24,53 @@ class LabelEncoder(base.BaseTransformer):
|
|
24
24
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html).
|
25
25
|
|
26
26
|
Args:
|
27
|
-
input_cols:
|
28
|
-
|
27
|
+
input_cols: Optional[Union[str, List[str]]]
|
28
|
+
The name of a column in a DataFrame to be encoded. May be a string or a list containing one string.
|
29
|
+
|
30
|
+
output_cols: Optional[Union[str, List[str]]]
|
31
|
+
The name of a column in a DataFrame where the results will be stored. May be a string or a list
|
29
32
|
containing one string.
|
30
|
-
|
33
|
+
|
34
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
35
|
+
A string or a list of strings indicating column names to be excluded from any
|
36
|
+
operations (such as train, transform, or inference). These specified column(s)
|
37
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
38
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
39
|
+
columns, like index columns, during training or inference.
|
40
|
+
|
41
|
+
drop_input_cols: Optional[bool], default=False
|
42
|
+
Remove input columns from output if set True. False by default.
|
31
43
|
"""
|
32
44
|
|
33
45
|
def __init__(
|
34
46
|
self,
|
35
47
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
36
48
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
49
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
37
50
|
drop_input_cols: Optional[bool] = False,
|
38
51
|
) -> None:
|
39
52
|
"""
|
40
53
|
Encode target labels with integers between 0 and n_classes-1.
|
41
54
|
|
42
55
|
Args:
|
43
|
-
input_cols:
|
56
|
+
input_cols: Optional[Union[str, List[str]]]
|
57
|
+
The name of a column in a DataFrame to be encoded. May be a string or a list containing one
|
44
58
|
string.
|
45
|
-
output_cols:
|
59
|
+
output_cols: Optional[Union[str, List[str]]]
|
60
|
+
The name of a column in a DataFrame where the results will be stored. May be a string or a list
|
46
61
|
containing one string.
|
47
|
-
|
62
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
63
|
+
A string or a list of strings indicating column names to be excluded from any
|
64
|
+
operations (such as train, transform, or inference). These specified column(s)
|
65
|
+
will remain untouched throughout the process. This option is helful in scenarios
|
66
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
67
|
+
columns, like index columns, during in training or inference.
|
68
|
+
drop_input_cols: Optional[bool], default=False
|
69
|
+
Remove input columns from output if set True. False by default.
|
48
70
|
|
49
71
|
Attributes:
|
50
|
-
classes_:
|
72
|
+
classes_: Optional[type_utils.LiteralNDArrayType]
|
73
|
+
A np.ndarray that holds the label for each class.
|
51
74
|
Attributes are valid only after fit() has been called.
|
52
75
|
|
53
76
|
"""
|
@@ -56,6 +79,7 @@ class LabelEncoder(base.BaseTransformer):
|
|
56
79
|
self.classes_: Optional[type_utils.LiteralNDArrayType] = None
|
57
80
|
self.set_input_cols(input_cols)
|
58
81
|
self.set_output_cols(output_cols)
|
82
|
+
self.set_passthrough_cols(passthrough_cols)
|
59
83
|
|
60
84
|
def _reset(self) -> None:
|
61
85
|
super()._reset()
|
@@ -114,10 +138,6 @@ class LabelEncoder(base.BaseTransformer):
|
|
114
138
|
project=base.PROJECT,
|
115
139
|
subproject=base.SUBPROJECT,
|
116
140
|
)
|
117
|
-
@telemetry.add_stmt_params_to_df(
|
118
|
-
project=base.PROJECT,
|
119
|
-
subproject=base.SUBPROJECT,
|
120
|
-
)
|
121
141
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
122
142
|
"""
|
123
143
|
Use fit result to transform snowpark dataframe or pandas dataframe. The original dataset with
|