snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MiniBatchKMeans(BaseTransformer):
|
57
58
|
r"""Mini-Batch K-Means clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
|
@@ -61,6 +62,48 @@ class MiniBatchKMeans(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
64
107
|
n_clusters: int, default=8
|
65
108
|
The number of clusters to form as well as the number of
|
66
109
|
centroids to generate.
|
@@ -150,35 +193,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
150
193
|
converge, but should converge in a better clustering. However, too high
|
151
194
|
a value may cause convergence issues, especially with a small batch
|
152
195
|
size.
|
153
|
-
|
154
|
-
input_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or list of strings representing column names that contain features.
|
156
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
157
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
158
|
-
considered input columns.
|
159
|
-
|
160
|
-
label_cols: Optional[Union[str, List[str]]]
|
161
|
-
A string or list of strings representing column names that contain labels.
|
162
|
-
This is a required param for estimators, as there is no way to infer these
|
163
|
-
columns. If this parameter is not specified, then object is fitted without
|
164
|
-
labels (like a transformer).
|
165
|
-
|
166
|
-
output_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that will store the
|
168
|
-
output of predict and transform operations. The length of output_cols must
|
169
|
-
match the expected number of output columns from the specific estimator or
|
170
|
-
transformer class used.
|
171
|
-
If this parameter is not specified, output column names are derived by
|
172
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
173
|
-
column names work for estimator's predict() method, but output_cols must
|
174
|
-
be set explicitly for transformers.
|
175
|
-
|
176
|
-
sample_weight_col: Optional[str]
|
177
|
-
A string representing the column name containing the sample weights.
|
178
|
-
This argument is only required when working with weighted datasets.
|
179
|
-
|
180
|
-
drop_input_cols: Optional[bool], default=False
|
181
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
182
196
|
"""
|
183
197
|
|
184
198
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -199,6 +213,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
199
213
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
200
214
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
215
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
216
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
202
217
|
drop_input_cols: Optional[bool] = False,
|
203
218
|
sample_weight_col: Optional[str] = None,
|
204
219
|
) -> None:
|
@@ -207,9 +222,10 @@ class MiniBatchKMeans(BaseTransformer):
|
|
207
222
|
self.set_input_cols(input_cols)
|
208
223
|
self.set_output_cols(output_cols)
|
209
224
|
self.set_label_cols(label_cols)
|
225
|
+
self.set_passthrough_cols(passthrough_cols)
|
210
226
|
self.set_drop_input_cols(drop_input_cols)
|
211
227
|
self.set_sample_weight_col(sample_weight_col)
|
212
|
-
deps = set(
|
228
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
213
229
|
|
214
230
|
self._deps = list(deps)
|
215
231
|
|
@@ -229,13 +245,14 @@ class MiniBatchKMeans(BaseTransformer):
|
|
229
245
|
args=init_args,
|
230
246
|
klass=sklearn.cluster.MiniBatchKMeans
|
231
247
|
)
|
232
|
-
self._sklearn_object = sklearn.cluster.MiniBatchKMeans(
|
248
|
+
self._sklearn_object: Any = sklearn.cluster.MiniBatchKMeans(
|
233
249
|
**cleaned_up_init_args,
|
234
250
|
)
|
235
251
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
236
252
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
237
253
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
238
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
254
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
255
|
+
self._autogenerated = True
|
239
256
|
|
240
257
|
def _get_rand_id(self) -> str:
|
241
258
|
"""
|
@@ -246,24 +263,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
246
263
|
"""
|
247
264
|
return str(uuid4()).replace("-", "_").upper()
|
248
265
|
|
249
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
250
|
-
"""
|
251
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
252
|
-
|
253
|
-
Args:
|
254
|
-
dataset: Input dataset.
|
255
|
-
"""
|
256
|
-
if not self.input_cols:
|
257
|
-
cols = [
|
258
|
-
c for c in dataset.columns
|
259
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
260
|
-
]
|
261
|
-
self.set_input_cols(input_cols=cols)
|
262
|
-
|
263
|
-
if not self.output_cols:
|
264
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
265
|
-
self.set_output_cols(output_cols=cols)
|
266
|
-
|
267
266
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MiniBatchKMeans":
|
268
267
|
"""
|
269
268
|
Input columns setter.
|
@@ -309,54 +308,48 @@ class MiniBatchKMeans(BaseTransformer):
|
|
309
308
|
self
|
310
309
|
"""
|
311
310
|
self._infer_input_output_cols(dataset)
|
312
|
-
if isinstance(dataset,
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
self.
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
311
|
+
if isinstance(dataset, DataFrame):
|
312
|
+
session = dataset._session
|
313
|
+
assert session is not None # keep mypy happy
|
314
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
315
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
316
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
317
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
318
|
+
|
319
|
+
# Specify input columns so column pruning will be enforced
|
320
|
+
selected_cols = self._get_active_columns()
|
321
|
+
if len(selected_cols) > 0:
|
322
|
+
dataset = dataset.select(selected_cols)
|
323
|
+
|
324
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
|
+
|
326
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
327
|
+
if SNOWML_SPROC_ENV in os.environ:
|
328
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
329
|
+
project=_PROJECT,
|
330
|
+
subproject=_SUBPROJECT,
|
331
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchKMeans.__class__.__name__),
|
332
|
+
api_calls=[Session.call],
|
333
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
334
|
+
)
|
335
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
336
|
+
pd_df.columns = dataset.columns
|
337
|
+
dataset = pd_df
|
338
|
+
|
339
|
+
model_trainer = ModelTrainerBuilder.build(
|
340
|
+
estimator=self._sklearn_object,
|
341
|
+
dataset=dataset,
|
342
|
+
input_cols=self.input_cols,
|
343
|
+
label_cols=self.label_cols,
|
344
|
+
sample_weight_col=self.sample_weight_col,
|
345
|
+
autogenerated=self._autogenerated,
|
346
|
+
subproject=_SUBPROJECT
|
347
|
+
)
|
348
|
+
self._sklearn_object = model_trainer.train()
|
328
349
|
self._is_fitted = True
|
329
350
|
self._get_model_signatures(dataset)
|
330
351
|
return self
|
331
352
|
|
332
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
333
|
-
session = dataset._session
|
334
|
-
assert session is not None # keep mypy happy
|
335
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
336
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
337
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
338
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
339
|
-
|
340
|
-
# Specify input columns so column pruning will be enforced
|
341
|
-
selected_cols = self._get_active_columns()
|
342
|
-
if len(selected_cols) > 0:
|
343
|
-
dataset = dataset.select(selected_cols)
|
344
|
-
|
345
|
-
estimator = self._sklearn_object
|
346
|
-
assert estimator is not None # Keep mypy happy
|
347
|
-
|
348
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
349
|
-
|
350
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
351
|
-
dataset,
|
352
|
-
session,
|
353
|
-
estimator,
|
354
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
355
|
-
self.input_cols,
|
356
|
-
self.label_cols,
|
357
|
-
self.sample_weight_col,
|
358
|
-
)
|
359
|
-
|
360
353
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
361
354
|
if self._drop_input_cols:
|
362
355
|
return []
|
@@ -544,11 +537,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
544
537
|
subproject=_SUBPROJECT,
|
545
538
|
custom_tags=dict([("autogen", True)]),
|
546
539
|
)
|
547
|
-
@telemetry.add_stmt_params_to_df(
|
548
|
-
project=_PROJECT,
|
549
|
-
subproject=_SUBPROJECT,
|
550
|
-
custom_tags=dict([("autogen", True)]),
|
551
|
-
)
|
552
540
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
553
541
|
"""Predict the closest cluster each sample in X belongs to
|
554
542
|
For more details on this function, see [sklearn.cluster.MiniBatchKMeans.predict]
|
@@ -602,11 +590,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
602
590
|
subproject=_SUBPROJECT,
|
603
591
|
custom_tags=dict([("autogen", True)]),
|
604
592
|
)
|
605
|
-
@telemetry.add_stmt_params_to_df(
|
606
|
-
project=_PROJECT,
|
607
|
-
subproject=_SUBPROJECT,
|
608
|
-
custom_tags=dict([("autogen", True)]),
|
609
|
-
)
|
610
593
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
611
594
|
"""Transform X to a cluster-distance space
|
612
595
|
For more details on this function, see [sklearn.cluster.MiniBatchKMeans.transform]
|
@@ -667,7 +650,8 @@ class MiniBatchKMeans(BaseTransformer):
|
|
667
650
|
if True:
|
668
651
|
self.fit(dataset)
|
669
652
|
assert self._sklearn_object is not None
|
670
|
-
|
653
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
654
|
+
return labels
|
671
655
|
else:
|
672
656
|
raise NotImplementedError
|
673
657
|
|
@@ -703,6 +687,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
703
687
|
output_cols = []
|
704
688
|
|
705
689
|
# Make sure column names are valid snowflake identifiers.
|
690
|
+
assert output_cols is not None # Make MyPy happy
|
706
691
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
707
692
|
|
708
693
|
return rv
|
@@ -713,11 +698,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
713
698
|
subproject=_SUBPROJECT,
|
714
699
|
custom_tags=dict([("autogen", True)]),
|
715
700
|
)
|
716
|
-
@telemetry.add_stmt_params_to_df(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
701
|
def predict_proba(
|
722
702
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
723
703
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -758,11 +738,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
758
738
|
subproject=_SUBPROJECT,
|
759
739
|
custom_tags=dict([("autogen", True)]),
|
760
740
|
)
|
761
|
-
@telemetry.add_stmt_params_to_df(
|
762
|
-
project=_PROJECT,
|
763
|
-
subproject=_SUBPROJECT,
|
764
|
-
custom_tags=dict([("autogen", True)]),
|
765
|
-
)
|
766
741
|
def predict_log_proba(
|
767
742
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
768
743
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -799,16 +774,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
799
774
|
return output_df
|
800
775
|
|
801
776
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
802
|
-
@telemetry.send_api_usage_telemetry(
|
803
|
-
project=_PROJECT,
|
804
|
-
subproject=_SUBPROJECT,
|
805
|
-
custom_tags=dict([("autogen", True)]),
|
806
|
-
)
|
807
|
-
@telemetry.add_stmt_params_to_df(
|
808
|
-
project=_PROJECT,
|
809
|
-
subproject=_SUBPROJECT,
|
810
|
-
custom_tags=dict([("autogen", True)]),
|
811
|
-
)
|
812
777
|
def decision_function(
|
813
778
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
814
779
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -909,11 +874,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
909
874
|
subproject=_SUBPROJECT,
|
910
875
|
custom_tags=dict([("autogen", True)]),
|
911
876
|
)
|
912
|
-
@telemetry.add_stmt_params_to_df(
|
913
|
-
project=_PROJECT,
|
914
|
-
subproject=_SUBPROJECT,
|
915
|
-
custom_tags=dict([("autogen", True)]),
|
916
|
-
)
|
917
877
|
def kneighbors(
|
918
878
|
self,
|
919
879
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -973,18 +933,28 @@ class MiniBatchKMeans(BaseTransformer):
|
|
973
933
|
# For classifier, the type of predict is the same as the type of label
|
974
934
|
if self._sklearn_object._estimator_type == 'classifier':
|
975
935
|
# label columns is the desired type for output
|
976
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
936
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
977
937
|
# rename the output columns
|
978
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
938
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
939
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
940
|
+
([] if self._drop_input_cols else inputs)
|
941
|
+
+ outputs)
|
942
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
943
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
944
|
+
# Clusterer returns int64 cluster labels.
|
945
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
946
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
979
947
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
980
948
|
([] if self._drop_input_cols else inputs)
|
981
949
|
+ outputs)
|
950
|
+
|
982
951
|
# For regressor, the type of predict is float64
|
983
952
|
elif self._sklearn_object._estimator_type == 'regressor':
|
984
953
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
985
954
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
986
955
|
([] if self._drop_input_cols else inputs)
|
987
956
|
+ outputs)
|
957
|
+
|
988
958
|
for prob_func in PROB_FUNCTIONS:
|
989
959
|
if hasattr(self, prob_func):
|
990
960
|
output_cols_prefix: str = f"{prob_func}_"
|