snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MiniBatchKMeans(BaseTransformer):
57
58
  r"""Mini-Batch K-Means clustering
58
59
  For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
@@ -61,6 +62,48 @@ class MiniBatchKMeans(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
64
107
  n_clusters: int, default=8
65
108
  The number of clusters to form as well as the number of
66
109
  centroids to generate.
@@ -150,35 +193,6 @@ class MiniBatchKMeans(BaseTransformer):
150
193
  converge, but should converge in a better clustering. However, too high
151
194
  a value may cause convergence issues, especially with a small batch
152
195
  size.
153
-
154
- input_cols: Optional[Union[str, List[str]]]
155
- A string or list of strings representing column names that contain features.
156
- If this parameter is not specified, all columns in the input DataFrame except
157
- the columns specified by label_cols and sample_weight_col parameters are
158
- considered input columns.
159
-
160
- label_cols: Optional[Union[str, List[str]]]
161
- A string or list of strings representing column names that contain labels.
162
- This is a required param for estimators, as there is no way to infer these
163
- columns. If this parameter is not specified, then object is fitted without
164
- labels (like a transformer).
165
-
166
- output_cols: Optional[Union[str, List[str]]]
167
- A string or list of strings representing column names that will store the
168
- output of predict and transform operations. The length of output_cols must
169
- match the expected number of output columns from the specific estimator or
170
- transformer class used.
171
- If this parameter is not specified, output column names are derived by
172
- adding an OUTPUT_ prefix to the label column names. These inferred output
173
- column names work for estimator's predict() method, but output_cols must
174
- be set explicitly for transformers.
175
-
176
- sample_weight_col: Optional[str]
177
- A string representing the column name containing the sample weights.
178
- This argument is only required when working with weighted datasets.
179
-
180
- drop_input_cols: Optional[bool], default=False
181
- If set, the response of predict(), transform() methods will not contain input columns.
182
196
  """
183
197
 
184
198
  def __init__( # type: ignore[no-untyped-def]
@@ -199,6 +213,7 @@ class MiniBatchKMeans(BaseTransformer):
199
213
  input_cols: Optional[Union[str, Iterable[str]]] = None,
200
214
  output_cols: Optional[Union[str, Iterable[str]]] = None,
201
215
  label_cols: Optional[Union[str, Iterable[str]]] = None,
216
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
202
217
  drop_input_cols: Optional[bool] = False,
203
218
  sample_weight_col: Optional[str] = None,
204
219
  ) -> None:
@@ -207,9 +222,10 @@ class MiniBatchKMeans(BaseTransformer):
207
222
  self.set_input_cols(input_cols)
208
223
  self.set_output_cols(output_cols)
209
224
  self.set_label_cols(label_cols)
225
+ self.set_passthrough_cols(passthrough_cols)
210
226
  self.set_drop_input_cols(drop_input_cols)
211
227
  self.set_sample_weight_col(sample_weight_col)
212
- deps = set(SklearnWrapperProvider().dependencies)
228
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
213
229
 
214
230
  self._deps = list(deps)
215
231
 
@@ -229,13 +245,14 @@ class MiniBatchKMeans(BaseTransformer):
229
245
  args=init_args,
230
246
  klass=sklearn.cluster.MiniBatchKMeans
231
247
  )
232
- self._sklearn_object = sklearn.cluster.MiniBatchKMeans(
248
+ self._sklearn_object: Any = sklearn.cluster.MiniBatchKMeans(
233
249
  **cleaned_up_init_args,
234
250
  )
235
251
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
236
252
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
237
253
  self._snowpark_cols: Optional[List[str]] = self.input_cols
238
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
254
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
255
+ self._autogenerated = True
239
256
 
240
257
  def _get_rand_id(self) -> str:
241
258
  """
@@ -246,24 +263,6 @@ class MiniBatchKMeans(BaseTransformer):
246
263
  """
247
264
  return str(uuid4()).replace("-", "_").upper()
248
265
 
249
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
250
- """
251
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
252
-
253
- Args:
254
- dataset: Input dataset.
255
- """
256
- if not self.input_cols:
257
- cols = [
258
- c for c in dataset.columns
259
- if c not in self.get_label_cols() and c != self.sample_weight_col
260
- ]
261
- self.set_input_cols(input_cols=cols)
262
-
263
- if not self.output_cols:
264
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
265
- self.set_output_cols(output_cols=cols)
266
-
267
266
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MiniBatchKMeans":
268
267
  """
269
268
  Input columns setter.
@@ -309,54 +308,48 @@ class MiniBatchKMeans(BaseTransformer):
309
308
  self
310
309
  """
311
310
  self._infer_input_output_cols(dataset)
312
- if isinstance(dataset, pd.DataFrame):
313
- assert self._sklearn_object is not None # keep mypy happy
314
- self._sklearn_object = self._handlers.fit_pandas(
315
- dataset,
316
- self._sklearn_object,
317
- self.input_cols,
318
- self.label_cols,
319
- self.sample_weight_col
320
- )
321
- elif isinstance(dataset, DataFrame):
322
- self._fit_snowpark(dataset)
323
- else:
324
- raise TypeError(
325
- f"Unexpected dataset type: {type(dataset)}."
326
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
327
- )
311
+ if isinstance(dataset, DataFrame):
312
+ session = dataset._session
313
+ assert session is not None # keep mypy happy
314
+ # Validate that key package version in user workspace are supported in snowflake conda channel
315
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
316
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
317
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
318
+
319
+ # Specify input columns so column pruning will be enforced
320
+ selected_cols = self._get_active_columns()
321
+ if len(selected_cols) > 0:
322
+ dataset = dataset.select(selected_cols)
323
+
324
+ self._snowpark_cols = dataset.select(self.input_cols).columns
325
+
326
+ # If we are already in a stored procedure, no need to kick off another one.
327
+ if SNOWML_SPROC_ENV in os.environ:
328
+ statement_params = telemetry.get_function_usage_statement_params(
329
+ project=_PROJECT,
330
+ subproject=_SUBPROJECT,
331
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchKMeans.__class__.__name__),
332
+ api_calls=[Session.call],
333
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
334
+ )
335
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
336
+ pd_df.columns = dataset.columns
337
+ dataset = pd_df
338
+
339
+ model_trainer = ModelTrainerBuilder.build(
340
+ estimator=self._sklearn_object,
341
+ dataset=dataset,
342
+ input_cols=self.input_cols,
343
+ label_cols=self.label_cols,
344
+ sample_weight_col=self.sample_weight_col,
345
+ autogenerated=self._autogenerated,
346
+ subproject=_SUBPROJECT
347
+ )
348
+ self._sklearn_object = model_trainer.train()
328
349
  self._is_fitted = True
329
350
  self._get_model_signatures(dataset)
330
351
  return self
331
352
 
332
- def _fit_snowpark(self, dataset: DataFrame) -> None:
333
- session = dataset._session
334
- assert session is not None # keep mypy happy
335
- # Validate that key package version in user workspace are supported in snowflake conda channel
336
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
337
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
338
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
339
-
340
- # Specify input columns so column pruning will be enforced
341
- selected_cols = self._get_active_columns()
342
- if len(selected_cols) > 0:
343
- dataset = dataset.select(selected_cols)
344
-
345
- estimator = self._sklearn_object
346
- assert estimator is not None # Keep mypy happy
347
-
348
- self._snowpark_cols = dataset.select(self.input_cols).columns
349
-
350
- self._sklearn_object = self._handlers.fit_snowpark(
351
- dataset,
352
- session,
353
- estimator,
354
- ["snowflake-snowpark-python"] + self._get_dependencies(),
355
- self.input_cols,
356
- self.label_cols,
357
- self.sample_weight_col,
358
- )
359
-
360
353
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
361
354
  if self._drop_input_cols:
362
355
  return []
@@ -544,11 +537,6 @@ class MiniBatchKMeans(BaseTransformer):
544
537
  subproject=_SUBPROJECT,
545
538
  custom_tags=dict([("autogen", True)]),
546
539
  )
547
- @telemetry.add_stmt_params_to_df(
548
- project=_PROJECT,
549
- subproject=_SUBPROJECT,
550
- custom_tags=dict([("autogen", True)]),
551
- )
552
540
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
553
541
  """Predict the closest cluster each sample in X belongs to
554
542
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.predict]
@@ -602,11 +590,6 @@ class MiniBatchKMeans(BaseTransformer):
602
590
  subproject=_SUBPROJECT,
603
591
  custom_tags=dict([("autogen", True)]),
604
592
  )
605
- @telemetry.add_stmt_params_to_df(
606
- project=_PROJECT,
607
- subproject=_SUBPROJECT,
608
- custom_tags=dict([("autogen", True)]),
609
- )
610
593
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
611
594
  """Transform X to a cluster-distance space
612
595
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.transform]
@@ -667,7 +650,8 @@ class MiniBatchKMeans(BaseTransformer):
667
650
  if True:
668
651
  self.fit(dataset)
669
652
  assert self._sklearn_object is not None
670
- return self._sklearn_object.labels_
653
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
654
+ return labels
671
655
  else:
672
656
  raise NotImplementedError
673
657
 
@@ -703,6 +687,7 @@ class MiniBatchKMeans(BaseTransformer):
703
687
  output_cols = []
704
688
 
705
689
  # Make sure column names are valid snowflake identifiers.
690
+ assert output_cols is not None # Make MyPy happy
706
691
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
707
692
 
708
693
  return rv
@@ -713,11 +698,6 @@ class MiniBatchKMeans(BaseTransformer):
713
698
  subproject=_SUBPROJECT,
714
699
  custom_tags=dict([("autogen", True)]),
715
700
  )
716
- @telemetry.add_stmt_params_to_df(
717
- project=_PROJECT,
718
- subproject=_SUBPROJECT,
719
- custom_tags=dict([("autogen", True)]),
720
- )
721
701
  def predict_proba(
722
702
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
723
703
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -758,11 +738,6 @@ class MiniBatchKMeans(BaseTransformer):
758
738
  subproject=_SUBPROJECT,
759
739
  custom_tags=dict([("autogen", True)]),
760
740
  )
761
- @telemetry.add_stmt_params_to_df(
762
- project=_PROJECT,
763
- subproject=_SUBPROJECT,
764
- custom_tags=dict([("autogen", True)]),
765
- )
766
741
  def predict_log_proba(
767
742
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
768
743
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -799,16 +774,6 @@ class MiniBatchKMeans(BaseTransformer):
799
774
  return output_df
800
775
 
801
776
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
802
- @telemetry.send_api_usage_telemetry(
803
- project=_PROJECT,
804
- subproject=_SUBPROJECT,
805
- custom_tags=dict([("autogen", True)]),
806
- )
807
- @telemetry.add_stmt_params_to_df(
808
- project=_PROJECT,
809
- subproject=_SUBPROJECT,
810
- custom_tags=dict([("autogen", True)]),
811
- )
812
777
  def decision_function(
813
778
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
814
779
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -909,11 +874,6 @@ class MiniBatchKMeans(BaseTransformer):
909
874
  subproject=_SUBPROJECT,
910
875
  custom_tags=dict([("autogen", True)]),
911
876
  )
912
- @telemetry.add_stmt_params_to_df(
913
- project=_PROJECT,
914
- subproject=_SUBPROJECT,
915
- custom_tags=dict([("autogen", True)]),
916
- )
917
877
  def kneighbors(
918
878
  self,
919
879
  dataset: Union[DataFrame, pd.DataFrame],
@@ -973,18 +933,28 @@ class MiniBatchKMeans(BaseTransformer):
973
933
  # For classifier, the type of predict is the same as the type of label
974
934
  if self._sklearn_object._estimator_type == 'classifier':
975
935
  # label columns is the desired type for output
976
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
936
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
977
937
  # rename the output columns
978
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
938
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
939
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
940
+ ([] if self._drop_input_cols else inputs)
941
+ + outputs)
942
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
943
+ # For outlier models, returns -1 for outliers and 1 for inliers.
944
+ # Clusterer returns int64 cluster labels.
945
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
946
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
979
947
  self._model_signature_dict["predict"] = ModelSignature(inputs,
980
948
  ([] if self._drop_input_cols else inputs)
981
949
  + outputs)
950
+
982
951
  # For regressor, the type of predict is float64
983
952
  elif self._sklearn_object._estimator_type == 'regressor':
984
953
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
985
954
  self._model_signature_dict["predict"] = ModelSignature(inputs,
986
955
  ([] if self._drop_input_cols else inputs)
987
956
  + outputs)
957
+
988
958
  for prob_func in PROB_FUNCTIONS:
989
959
  if hasattr(self, prob_func):
990
960
  output_cols_prefix: str = f"{prob_func}_"