snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class TheilSenRegressor(BaseTransformer):
57
58
  r"""Theil-Sen Estimator: robust multivariate regression model
58
59
  For more details on this class, see [sklearn.linear_model.TheilSenRegressor]
@@ -60,6 +61,51 @@ class TheilSenRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations.
@@ -106,35 +152,6 @@ class TheilSenRegressor(BaseTransformer):
106
152
 
107
153
  verbose: bool, default=False
108
154
  Verbose mode when fitting the model.
109
-
110
- input_cols: Optional[Union[str, List[str]]]
111
- A string or list of strings representing column names that contain features.
112
- If this parameter is not specified, all columns in the input DataFrame except
113
- the columns specified by label_cols and sample_weight_col parameters are
114
- considered input columns.
115
-
116
- label_cols: Optional[Union[str, List[str]]]
117
- A string or list of strings representing column names that contain labels.
118
- This is a required param for estimators, as there is no way to infer these
119
- columns. If this parameter is not specified, then object is fitted without
120
- labels (like a transformer).
121
-
122
- output_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that will store the
124
- output of predict and transform operations. The length of output_cols must
125
- match the expected number of output columns from the specific estimator or
126
- transformer class used.
127
- If this parameter is not specified, output column names are derived by
128
- adding an OUTPUT_ prefix to the label column names. These inferred output
129
- column names work for estimator's predict() method, but output_cols must
130
- be set explicitly for transformers.
131
-
132
- sample_weight_col: Optional[str]
133
- A string representing the column name containing the sample weights.
134
- This argument is only required when working with weighted datasets.
135
-
136
- drop_input_cols: Optional[bool], default=False
137
- If set, the response of predict(), transform() methods will not contain input columns.
138
155
  """
139
156
 
140
157
  def __init__( # type: ignore[no-untyped-def]
@@ -152,6 +169,7 @@ class TheilSenRegressor(BaseTransformer):
152
169
  input_cols: Optional[Union[str, Iterable[str]]] = None,
153
170
  output_cols: Optional[Union[str, Iterable[str]]] = None,
154
171
  label_cols: Optional[Union[str, Iterable[str]]] = None,
172
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
155
173
  drop_input_cols: Optional[bool] = False,
156
174
  sample_weight_col: Optional[str] = None,
157
175
  ) -> None:
@@ -160,9 +178,10 @@ class TheilSenRegressor(BaseTransformer):
160
178
  self.set_input_cols(input_cols)
161
179
  self.set_output_cols(output_cols)
162
180
  self.set_label_cols(label_cols)
181
+ self.set_passthrough_cols(passthrough_cols)
163
182
  self.set_drop_input_cols(drop_input_cols)
164
183
  self.set_sample_weight_col(sample_weight_col)
165
- deps = set(SklearnWrapperProvider().dependencies)
184
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
166
185
 
167
186
  self._deps = list(deps)
168
187
 
@@ -179,13 +198,14 @@ class TheilSenRegressor(BaseTransformer):
179
198
  args=init_args,
180
199
  klass=sklearn.linear_model.TheilSenRegressor
181
200
  )
182
- self._sklearn_object = sklearn.linear_model.TheilSenRegressor(
201
+ self._sklearn_object: Any = sklearn.linear_model.TheilSenRegressor(
183
202
  **cleaned_up_init_args,
184
203
  )
185
204
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
186
205
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
187
206
  self._snowpark_cols: Optional[List[str]] = self.input_cols
188
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
207
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
208
+ self._autogenerated = True
189
209
 
190
210
  def _get_rand_id(self) -> str:
191
211
  """
@@ -196,24 +216,6 @@ class TheilSenRegressor(BaseTransformer):
196
216
  """
197
217
  return str(uuid4()).replace("-", "_").upper()
198
218
 
199
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
200
- """
201
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
202
-
203
- Args:
204
- dataset: Input dataset.
205
- """
206
- if not self.input_cols:
207
- cols = [
208
- c for c in dataset.columns
209
- if c not in self.get_label_cols() and c != self.sample_weight_col
210
- ]
211
- self.set_input_cols(input_cols=cols)
212
-
213
- if not self.output_cols:
214
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
215
- self.set_output_cols(output_cols=cols)
216
-
217
219
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TheilSenRegressor":
218
220
  """
219
221
  Input columns setter.
@@ -259,54 +261,48 @@ class TheilSenRegressor(BaseTransformer):
259
261
  self
260
262
  """
261
263
  self._infer_input_output_cols(dataset)
262
- if isinstance(dataset, pd.DataFrame):
263
- assert self._sklearn_object is not None # keep mypy happy
264
- self._sklearn_object = self._handlers.fit_pandas(
265
- dataset,
266
- self._sklearn_object,
267
- self.input_cols,
268
- self.label_cols,
269
- self.sample_weight_col
270
- )
271
- elif isinstance(dataset, DataFrame):
272
- self._fit_snowpark(dataset)
273
- else:
274
- raise TypeError(
275
- f"Unexpected dataset type: {type(dataset)}."
276
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
277
- )
264
+ if isinstance(dataset, DataFrame):
265
+ session = dataset._session
266
+ assert session is not None # keep mypy happy
267
+ # Validate that key package version in user workspace are supported in snowflake conda channel
268
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
269
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
270
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
271
+
272
+ # Specify input columns so column pruning will be enforced
273
+ selected_cols = self._get_active_columns()
274
+ if len(selected_cols) > 0:
275
+ dataset = dataset.select(selected_cols)
276
+
277
+ self._snowpark_cols = dataset.select(self.input_cols).columns
278
+
279
+ # If we are already in a stored procedure, no need to kick off another one.
280
+ if SNOWML_SPROC_ENV in os.environ:
281
+ statement_params = telemetry.get_function_usage_statement_params(
282
+ project=_PROJECT,
283
+ subproject=_SUBPROJECT,
284
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TheilSenRegressor.__class__.__name__),
285
+ api_calls=[Session.call],
286
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
287
+ )
288
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
289
+ pd_df.columns = dataset.columns
290
+ dataset = pd_df
291
+
292
+ model_trainer = ModelTrainerBuilder.build(
293
+ estimator=self._sklearn_object,
294
+ dataset=dataset,
295
+ input_cols=self.input_cols,
296
+ label_cols=self.label_cols,
297
+ sample_weight_col=self.sample_weight_col,
298
+ autogenerated=self._autogenerated,
299
+ subproject=_SUBPROJECT
300
+ )
301
+ self._sklearn_object = model_trainer.train()
278
302
  self._is_fitted = True
279
303
  self._get_model_signatures(dataset)
280
304
  return self
281
305
 
282
- def _fit_snowpark(self, dataset: DataFrame) -> None:
283
- session = dataset._session
284
- assert session is not None # keep mypy happy
285
- # Validate that key package version in user workspace are supported in snowflake conda channel
286
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
287
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
288
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
289
-
290
- # Specify input columns so column pruning will be enforced
291
- selected_cols = self._get_active_columns()
292
- if len(selected_cols) > 0:
293
- dataset = dataset.select(selected_cols)
294
-
295
- estimator = self._sklearn_object
296
- assert estimator is not None # Keep mypy happy
297
-
298
- self._snowpark_cols = dataset.select(self.input_cols).columns
299
-
300
- self._sklearn_object = self._handlers.fit_snowpark(
301
- dataset,
302
- session,
303
- estimator,
304
- ["snowflake-snowpark-python"] + self._get_dependencies(),
305
- self.input_cols,
306
- self.label_cols,
307
- self.sample_weight_col,
308
- )
309
-
310
306
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
311
307
  if self._drop_input_cols:
312
308
  return []
@@ -494,11 +490,6 @@ class TheilSenRegressor(BaseTransformer):
494
490
  subproject=_SUBPROJECT,
495
491
  custom_tags=dict([("autogen", True)]),
496
492
  )
497
- @telemetry.add_stmt_params_to_df(
498
- project=_PROJECT,
499
- subproject=_SUBPROJECT,
500
- custom_tags=dict([("autogen", True)]),
501
- )
502
493
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
503
494
  """Predict using the linear model
504
495
  For more details on this function, see [sklearn.linear_model.TheilSenRegressor.predict]
@@ -552,11 +543,6 @@ class TheilSenRegressor(BaseTransformer):
552
543
  subproject=_SUBPROJECT,
553
544
  custom_tags=dict([("autogen", True)]),
554
545
  )
555
- @telemetry.add_stmt_params_to_df(
556
- project=_PROJECT,
557
- subproject=_SUBPROJECT,
558
- custom_tags=dict([("autogen", True)]),
559
- )
560
546
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
561
547
  """Method not supported for this class.
562
548
 
@@ -613,7 +599,8 @@ class TheilSenRegressor(BaseTransformer):
613
599
  if False:
614
600
  self.fit(dataset)
615
601
  assert self._sklearn_object is not None
616
- return self._sklearn_object.labels_
602
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
603
+ return labels
617
604
  else:
618
605
  raise NotImplementedError
619
606
 
@@ -649,6 +636,7 @@ class TheilSenRegressor(BaseTransformer):
649
636
  output_cols = []
650
637
 
651
638
  # Make sure column names are valid snowflake identifiers.
639
+ assert output_cols is not None # Make MyPy happy
652
640
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
653
641
 
654
642
  return rv
@@ -659,11 +647,6 @@ class TheilSenRegressor(BaseTransformer):
659
647
  subproject=_SUBPROJECT,
660
648
  custom_tags=dict([("autogen", True)]),
661
649
  )
662
- @telemetry.add_stmt_params_to_df(
663
- project=_PROJECT,
664
- subproject=_SUBPROJECT,
665
- custom_tags=dict([("autogen", True)]),
666
- )
667
650
  def predict_proba(
668
651
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
669
652
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -704,11 +687,6 @@ class TheilSenRegressor(BaseTransformer):
704
687
  subproject=_SUBPROJECT,
705
688
  custom_tags=dict([("autogen", True)]),
706
689
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
690
  def predict_log_proba(
713
691
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
714
692
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -745,16 +723,6 @@ class TheilSenRegressor(BaseTransformer):
745
723
  return output_df
746
724
 
747
725
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
748
- @telemetry.send_api_usage_telemetry(
749
- project=_PROJECT,
750
- subproject=_SUBPROJECT,
751
- custom_tags=dict([("autogen", True)]),
752
- )
753
- @telemetry.add_stmt_params_to_df(
754
- project=_PROJECT,
755
- subproject=_SUBPROJECT,
756
- custom_tags=dict([("autogen", True)]),
757
- )
758
726
  def decision_function(
759
727
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
760
728
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -855,11 +823,6 @@ class TheilSenRegressor(BaseTransformer):
855
823
  subproject=_SUBPROJECT,
856
824
  custom_tags=dict([("autogen", True)]),
857
825
  )
858
- @telemetry.add_stmt_params_to_df(
859
- project=_PROJECT,
860
- subproject=_SUBPROJECT,
861
- custom_tags=dict([("autogen", True)]),
862
- )
863
826
  def kneighbors(
864
827
  self,
865
828
  dataset: Union[DataFrame, pd.DataFrame],
@@ -919,18 +882,28 @@ class TheilSenRegressor(BaseTransformer):
919
882
  # For classifier, the type of predict is the same as the type of label
920
883
  if self._sklearn_object._estimator_type == 'classifier':
921
884
  # label columns is the desired type for output
922
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
885
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
923
886
  # rename the output columns
924
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
887
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
925
888
  self._model_signature_dict["predict"] = ModelSignature(inputs,
926
889
  ([] if self._drop_input_cols else inputs)
927
890
  + outputs)
891
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
892
+ # For outlier models, returns -1 for outliers and 1 for inliers.
893
+ # Clusterer returns int64 cluster labels.
894
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
895
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
896
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
897
+ ([] if self._drop_input_cols else inputs)
898
+ + outputs)
899
+
928
900
  # For regressor, the type of predict is float64
929
901
  elif self._sklearn_object._estimator_type == 'regressor':
930
902
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
931
903
  self._model_signature_dict["predict"] = ModelSignature(inputs,
932
904
  ([] if self._drop_input_cols else inputs)
933
905
  + outputs)
906
+
934
907
  for prob_func in PROB_FUNCTIONS:
935
908
  if hasattr(self, prob_func):
936
909
  output_cols_prefix: str = f"{prob_func}_"