snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TruncatedSVD(BaseTransformer):
|
57
58
|
r"""Dimensionality reduction using truncated SVD (aka LSA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.TruncatedSVD]
|
@@ -60,6 +61,49 @@ class TruncatedSVD(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=2
|
64
108
|
Desired dimensionality of output data.
|
65
109
|
If algorithm='arpack', must be strictly less than the number of features.
|
@@ -96,35 +140,6 @@ class TruncatedSVD(BaseTransformer):
|
|
96
140
|
tol: float, default=0.0
|
97
141
|
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
98
142
|
SVD solver.
|
99
|
-
|
100
|
-
input_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain features.
|
102
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
103
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
104
|
-
considered input columns.
|
105
|
-
|
106
|
-
label_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain labels.
|
108
|
-
This is a required param for estimators, as there is no way to infer these
|
109
|
-
columns. If this parameter is not specified, then object is fitted without
|
110
|
-
labels (like a transformer).
|
111
|
-
|
112
|
-
output_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that will store the
|
114
|
-
output of predict and transform operations. The length of output_cols must
|
115
|
-
match the expected number of output columns from the specific estimator or
|
116
|
-
transformer class used.
|
117
|
-
If this parameter is not specified, output column names are derived by
|
118
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
119
|
-
column names work for estimator's predict() method, but output_cols must
|
120
|
-
be set explicitly for transformers.
|
121
|
-
|
122
|
-
sample_weight_col: Optional[str]
|
123
|
-
A string representing the column name containing the sample weights.
|
124
|
-
This argument is only required when working with weighted datasets.
|
125
|
-
|
126
|
-
drop_input_cols: Optional[bool], default=False
|
127
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
128
143
|
"""
|
129
144
|
|
130
145
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -140,6 +155,7 @@ class TruncatedSVD(BaseTransformer):
|
|
140
155
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
141
156
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
142
157
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
158
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
143
159
|
drop_input_cols: Optional[bool] = False,
|
144
160
|
sample_weight_col: Optional[str] = None,
|
145
161
|
) -> None:
|
@@ -148,9 +164,10 @@ class TruncatedSVD(BaseTransformer):
|
|
148
164
|
self.set_input_cols(input_cols)
|
149
165
|
self.set_output_cols(output_cols)
|
150
166
|
self.set_label_cols(label_cols)
|
167
|
+
self.set_passthrough_cols(passthrough_cols)
|
151
168
|
self.set_drop_input_cols(drop_input_cols)
|
152
169
|
self.set_sample_weight_col(sample_weight_col)
|
153
|
-
deps = set(
|
170
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
154
171
|
|
155
172
|
self._deps = list(deps)
|
156
173
|
|
@@ -165,13 +182,14 @@ class TruncatedSVD(BaseTransformer):
|
|
165
182
|
args=init_args,
|
166
183
|
klass=sklearn.decomposition.TruncatedSVD
|
167
184
|
)
|
168
|
-
self._sklearn_object = sklearn.decomposition.TruncatedSVD(
|
185
|
+
self._sklearn_object: Any = sklearn.decomposition.TruncatedSVD(
|
169
186
|
**cleaned_up_init_args,
|
170
187
|
)
|
171
188
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
172
189
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
173
190
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
174
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TruncatedSVD.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
191
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TruncatedSVD.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
192
|
+
self._autogenerated = True
|
175
193
|
|
176
194
|
def _get_rand_id(self) -> str:
|
177
195
|
"""
|
@@ -182,24 +200,6 @@ class TruncatedSVD(BaseTransformer):
|
|
182
200
|
"""
|
183
201
|
return str(uuid4()).replace("-", "_").upper()
|
184
202
|
|
185
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
186
|
-
"""
|
187
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
188
|
-
|
189
|
-
Args:
|
190
|
-
dataset: Input dataset.
|
191
|
-
"""
|
192
|
-
if not self.input_cols:
|
193
|
-
cols = [
|
194
|
-
c for c in dataset.columns
|
195
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
196
|
-
]
|
197
|
-
self.set_input_cols(input_cols=cols)
|
198
|
-
|
199
|
-
if not self.output_cols:
|
200
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
201
|
-
self.set_output_cols(output_cols=cols)
|
202
|
-
|
203
203
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TruncatedSVD":
|
204
204
|
"""
|
205
205
|
Input columns setter.
|
@@ -245,54 +245,48 @@ class TruncatedSVD(BaseTransformer):
|
|
245
245
|
self
|
246
246
|
"""
|
247
247
|
self._infer_input_output_cols(dataset)
|
248
|
-
if isinstance(dataset,
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
self.
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
248
|
+
if isinstance(dataset, DataFrame):
|
249
|
+
session = dataset._session
|
250
|
+
assert session is not None # keep mypy happy
|
251
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
252
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
253
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
254
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
255
|
+
|
256
|
+
# Specify input columns so column pruning will be enforced
|
257
|
+
selected_cols = self._get_active_columns()
|
258
|
+
if len(selected_cols) > 0:
|
259
|
+
dataset = dataset.select(selected_cols)
|
260
|
+
|
261
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
+
|
263
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
264
|
+
if SNOWML_SPROC_ENV in os.environ:
|
265
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
266
|
+
project=_PROJECT,
|
267
|
+
subproject=_SUBPROJECT,
|
268
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TruncatedSVD.__class__.__name__),
|
269
|
+
api_calls=[Session.call],
|
270
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
271
|
+
)
|
272
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
273
|
+
pd_df.columns = dataset.columns
|
274
|
+
dataset = pd_df
|
275
|
+
|
276
|
+
model_trainer = ModelTrainerBuilder.build(
|
277
|
+
estimator=self._sklearn_object,
|
278
|
+
dataset=dataset,
|
279
|
+
input_cols=self.input_cols,
|
280
|
+
label_cols=self.label_cols,
|
281
|
+
sample_weight_col=self.sample_weight_col,
|
282
|
+
autogenerated=self._autogenerated,
|
283
|
+
subproject=_SUBPROJECT
|
284
|
+
)
|
285
|
+
self._sklearn_object = model_trainer.train()
|
264
286
|
self._is_fitted = True
|
265
287
|
self._get_model_signatures(dataset)
|
266
288
|
return self
|
267
289
|
|
268
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
269
|
-
session = dataset._session
|
270
|
-
assert session is not None # keep mypy happy
|
271
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
272
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
273
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
274
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
275
|
-
|
276
|
-
# Specify input columns so column pruning will be enforced
|
277
|
-
selected_cols = self._get_active_columns()
|
278
|
-
if len(selected_cols) > 0:
|
279
|
-
dataset = dataset.select(selected_cols)
|
280
|
-
|
281
|
-
estimator = self._sklearn_object
|
282
|
-
assert estimator is not None # Keep mypy happy
|
283
|
-
|
284
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
|
-
|
286
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
287
|
-
dataset,
|
288
|
-
session,
|
289
|
-
estimator,
|
290
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
291
|
-
self.input_cols,
|
292
|
-
self.label_cols,
|
293
|
-
self.sample_weight_col,
|
294
|
-
)
|
295
|
-
|
296
290
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
297
291
|
if self._drop_input_cols:
|
298
292
|
return []
|
@@ -480,11 +474,6 @@ class TruncatedSVD(BaseTransformer):
|
|
480
474
|
subproject=_SUBPROJECT,
|
481
475
|
custom_tags=dict([("autogen", True)]),
|
482
476
|
)
|
483
|
-
@telemetry.add_stmt_params_to_df(
|
484
|
-
project=_PROJECT,
|
485
|
-
subproject=_SUBPROJECT,
|
486
|
-
custom_tags=dict([("autogen", True)]),
|
487
|
-
)
|
488
477
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
489
478
|
"""Method not supported for this class.
|
490
479
|
|
@@ -536,11 +525,6 @@ class TruncatedSVD(BaseTransformer):
|
|
536
525
|
subproject=_SUBPROJECT,
|
537
526
|
custom_tags=dict([("autogen", True)]),
|
538
527
|
)
|
539
|
-
@telemetry.add_stmt_params_to_df(
|
540
|
-
project=_PROJECT,
|
541
|
-
subproject=_SUBPROJECT,
|
542
|
-
custom_tags=dict([("autogen", True)]),
|
543
|
-
)
|
544
528
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
545
529
|
"""Perform dimensionality reduction on X
|
546
530
|
For more details on this function, see [sklearn.decomposition.TruncatedSVD.transform]
|
@@ -599,7 +583,8 @@ class TruncatedSVD(BaseTransformer):
|
|
599
583
|
if False:
|
600
584
|
self.fit(dataset)
|
601
585
|
assert self._sklearn_object is not None
|
602
|
-
|
586
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
587
|
+
return labels
|
603
588
|
else:
|
604
589
|
raise NotImplementedError
|
605
590
|
|
@@ -635,6 +620,7 @@ class TruncatedSVD(BaseTransformer):
|
|
635
620
|
output_cols = []
|
636
621
|
|
637
622
|
# Make sure column names are valid snowflake identifiers.
|
623
|
+
assert output_cols is not None # Make MyPy happy
|
638
624
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
639
625
|
|
640
626
|
return rv
|
@@ -645,11 +631,6 @@ class TruncatedSVD(BaseTransformer):
|
|
645
631
|
subproject=_SUBPROJECT,
|
646
632
|
custom_tags=dict([("autogen", True)]),
|
647
633
|
)
|
648
|
-
@telemetry.add_stmt_params_to_df(
|
649
|
-
project=_PROJECT,
|
650
|
-
subproject=_SUBPROJECT,
|
651
|
-
custom_tags=dict([("autogen", True)]),
|
652
|
-
)
|
653
634
|
def predict_proba(
|
654
635
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
655
636
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -690,11 +671,6 @@ class TruncatedSVD(BaseTransformer):
|
|
690
671
|
subproject=_SUBPROJECT,
|
691
672
|
custom_tags=dict([("autogen", True)]),
|
692
673
|
)
|
693
|
-
@telemetry.add_stmt_params_to_df(
|
694
|
-
project=_PROJECT,
|
695
|
-
subproject=_SUBPROJECT,
|
696
|
-
custom_tags=dict([("autogen", True)]),
|
697
|
-
)
|
698
674
|
def predict_log_proba(
|
699
675
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
700
676
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -731,16 +707,6 @@ class TruncatedSVD(BaseTransformer):
|
|
731
707
|
return output_df
|
732
708
|
|
733
709
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
734
|
-
@telemetry.send_api_usage_telemetry(
|
735
|
-
project=_PROJECT,
|
736
|
-
subproject=_SUBPROJECT,
|
737
|
-
custom_tags=dict([("autogen", True)]),
|
738
|
-
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
710
|
def decision_function(
|
745
711
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
746
712
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -839,11 +805,6 @@ class TruncatedSVD(BaseTransformer):
|
|
839
805
|
subproject=_SUBPROJECT,
|
840
806
|
custom_tags=dict([("autogen", True)]),
|
841
807
|
)
|
842
|
-
@telemetry.add_stmt_params_to_df(
|
843
|
-
project=_PROJECT,
|
844
|
-
subproject=_SUBPROJECT,
|
845
|
-
custom_tags=dict([("autogen", True)]),
|
846
|
-
)
|
847
808
|
def kneighbors(
|
848
809
|
self,
|
849
810
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -903,18 +864,28 @@ class TruncatedSVD(BaseTransformer):
|
|
903
864
|
# For classifier, the type of predict is the same as the type of label
|
904
865
|
if self._sklearn_object._estimator_type == 'classifier':
|
905
866
|
# label columns is the desired type for output
|
906
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
867
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
907
868
|
# rename the output columns
|
908
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
869
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
870
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
871
|
+
([] if self._drop_input_cols else inputs)
|
872
|
+
+ outputs)
|
873
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
874
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
875
|
+
# Clusterer returns int64 cluster labels.
|
876
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
877
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
909
878
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
910
879
|
([] if self._drop_input_cols else inputs)
|
911
880
|
+ outputs)
|
881
|
+
|
912
882
|
# For regressor, the type of predict is float64
|
913
883
|
elif self._sklearn_object._estimator_type == 'regressor':
|
914
884
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
915
885
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
916
886
|
([] if self._drop_input_cols else inputs)
|
917
887
|
+ outputs)
|
888
|
+
|
918
889
|
for prob_func in PROB_FUNCTIONS:
|
919
890
|
if hasattr(self, prob_func):
|
920
891
|
output_cols_prefix: str = f"{prob_func}_"
|