snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SpectralCoclustering(BaseTransformer):
57
58
  r"""Spectral Co-Clustering algorithm (Dhillon, 2001)
58
59
  For more details on this class, see [sklearn.cluster.SpectralCoclustering]
@@ -60,6 +61,49 @@ class SpectralCoclustering(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int, default=3
64
108
  The number of biclusters to find.
65
109
 
@@ -96,35 +140,6 @@ class SpectralCoclustering(BaseTransformer):
96
140
  Used for randomizing the singular value decomposition and the k-means
97
141
  initialization. Use an int to make the randomness deterministic.
98
142
  See :term:`Glossary <random_state>`.
99
-
100
- input_cols: Optional[Union[str, List[str]]]
101
- A string or list of strings representing column names that contain features.
102
- If this parameter is not specified, all columns in the input DataFrame except
103
- the columns specified by label_cols and sample_weight_col parameters are
104
- considered input columns.
105
-
106
- label_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that contain labels.
108
- This is a required param for estimators, as there is no way to infer these
109
- columns. If this parameter is not specified, then object is fitted without
110
- labels (like a transformer).
111
-
112
- output_cols: Optional[Union[str, List[str]]]
113
- A string or list of strings representing column names that will store the
114
- output of predict and transform operations. The length of output_cols must
115
- match the expected number of output columns from the specific estimator or
116
- transformer class used.
117
- If this parameter is not specified, output column names are derived by
118
- adding an OUTPUT_ prefix to the label column names. These inferred output
119
- column names work for estimator's predict() method, but output_cols must
120
- be set explicitly for transformers.
121
-
122
- sample_weight_col: Optional[str]
123
- A string representing the column name containing the sample weights.
124
- This argument is only required when working with weighted datasets.
125
-
126
- drop_input_cols: Optional[bool], default=False
127
- If set, the response of predict(), transform() methods will not contain input columns.
128
143
  """
129
144
 
130
145
  def __init__( # type: ignore[no-untyped-def]
@@ -140,6 +155,7 @@ class SpectralCoclustering(BaseTransformer):
140
155
  input_cols: Optional[Union[str, Iterable[str]]] = None,
141
156
  output_cols: Optional[Union[str, Iterable[str]]] = None,
142
157
  label_cols: Optional[Union[str, Iterable[str]]] = None,
158
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
143
159
  drop_input_cols: Optional[bool] = False,
144
160
  sample_weight_col: Optional[str] = None,
145
161
  ) -> None:
@@ -148,9 +164,10 @@ class SpectralCoclustering(BaseTransformer):
148
164
  self.set_input_cols(input_cols)
149
165
  self.set_output_cols(output_cols)
150
166
  self.set_label_cols(label_cols)
167
+ self.set_passthrough_cols(passthrough_cols)
151
168
  self.set_drop_input_cols(drop_input_cols)
152
169
  self.set_sample_weight_col(sample_weight_col)
153
- deps = set(SklearnWrapperProvider().dependencies)
170
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
154
171
 
155
172
  self._deps = list(deps)
156
173
 
@@ -165,13 +182,14 @@ class SpectralCoclustering(BaseTransformer):
165
182
  args=init_args,
166
183
  klass=sklearn.cluster.SpectralCoclustering
167
184
  )
168
- self._sklearn_object = sklearn.cluster.SpectralCoclustering(
185
+ self._sklearn_object: Any = sklearn.cluster.SpectralCoclustering(
169
186
  **cleaned_up_init_args,
170
187
  )
171
188
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
172
189
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
173
190
  self._snowpark_cols: Optional[List[str]] = self.input_cols
174
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralCoclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
191
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralCoclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
192
+ self._autogenerated = True
175
193
 
176
194
  def _get_rand_id(self) -> str:
177
195
  """
@@ -182,24 +200,6 @@ class SpectralCoclustering(BaseTransformer):
182
200
  """
183
201
  return str(uuid4()).replace("-", "_").upper()
184
202
 
185
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
186
- """
187
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
188
-
189
- Args:
190
- dataset: Input dataset.
191
- """
192
- if not self.input_cols:
193
- cols = [
194
- c for c in dataset.columns
195
- if c not in self.get_label_cols() and c != self.sample_weight_col
196
- ]
197
- self.set_input_cols(input_cols=cols)
198
-
199
- if not self.output_cols:
200
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
201
- self.set_output_cols(output_cols=cols)
202
-
203
203
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SpectralCoclustering":
204
204
  """
205
205
  Input columns setter.
@@ -245,54 +245,48 @@ class SpectralCoclustering(BaseTransformer):
245
245
  self
246
246
  """
247
247
  self._infer_input_output_cols(dataset)
248
- if isinstance(dataset, pd.DataFrame):
249
- assert self._sklearn_object is not None # keep mypy happy
250
- self._sklearn_object = self._handlers.fit_pandas(
251
- dataset,
252
- self._sklearn_object,
253
- self.input_cols,
254
- self.label_cols,
255
- self.sample_weight_col
256
- )
257
- elif isinstance(dataset, DataFrame):
258
- self._fit_snowpark(dataset)
259
- else:
260
- raise TypeError(
261
- f"Unexpected dataset type: {type(dataset)}."
262
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
263
- )
248
+ if isinstance(dataset, DataFrame):
249
+ session = dataset._session
250
+ assert session is not None # keep mypy happy
251
+ # Validate that key package version in user workspace are supported in snowflake conda channel
252
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
253
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
254
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
255
+
256
+ # Specify input columns so column pruning will be enforced
257
+ selected_cols = self._get_active_columns()
258
+ if len(selected_cols) > 0:
259
+ dataset = dataset.select(selected_cols)
260
+
261
+ self._snowpark_cols = dataset.select(self.input_cols).columns
262
+
263
+ # If we are already in a stored procedure, no need to kick off another one.
264
+ if SNOWML_SPROC_ENV in os.environ:
265
+ statement_params = telemetry.get_function_usage_statement_params(
266
+ project=_PROJECT,
267
+ subproject=_SUBPROJECT,
268
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralCoclustering.__class__.__name__),
269
+ api_calls=[Session.call],
270
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
271
+ )
272
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
273
+ pd_df.columns = dataset.columns
274
+ dataset = pd_df
275
+
276
+ model_trainer = ModelTrainerBuilder.build(
277
+ estimator=self._sklearn_object,
278
+ dataset=dataset,
279
+ input_cols=self.input_cols,
280
+ label_cols=self.label_cols,
281
+ sample_weight_col=self.sample_weight_col,
282
+ autogenerated=self._autogenerated,
283
+ subproject=_SUBPROJECT
284
+ )
285
+ self._sklearn_object = model_trainer.train()
264
286
  self._is_fitted = True
265
287
  self._get_model_signatures(dataset)
266
288
  return self
267
289
 
268
- def _fit_snowpark(self, dataset: DataFrame) -> None:
269
- session = dataset._session
270
- assert session is not None # keep mypy happy
271
- # Validate that key package version in user workspace are supported in snowflake conda channel
272
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
273
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
274
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
275
-
276
- # Specify input columns so column pruning will be enforced
277
- selected_cols = self._get_active_columns()
278
- if len(selected_cols) > 0:
279
- dataset = dataset.select(selected_cols)
280
-
281
- estimator = self._sklearn_object
282
- assert estimator is not None # Keep mypy happy
283
-
284
- self._snowpark_cols = dataset.select(self.input_cols).columns
285
-
286
- self._sklearn_object = self._handlers.fit_snowpark(
287
- dataset,
288
- session,
289
- estimator,
290
- ["snowflake-snowpark-python"] + self._get_dependencies(),
291
- self.input_cols,
292
- self.label_cols,
293
- self.sample_weight_col,
294
- )
295
-
296
290
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
297
291
  if self._drop_input_cols:
298
292
  return []
@@ -480,11 +474,6 @@ class SpectralCoclustering(BaseTransformer):
480
474
  subproject=_SUBPROJECT,
481
475
  custom_tags=dict([("autogen", True)]),
482
476
  )
483
- @telemetry.add_stmt_params_to_df(
484
- project=_PROJECT,
485
- subproject=_SUBPROJECT,
486
- custom_tags=dict([("autogen", True)]),
487
- )
488
477
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
489
478
  """Method not supported for this class.
490
479
 
@@ -536,11 +525,6 @@ class SpectralCoclustering(BaseTransformer):
536
525
  subproject=_SUBPROJECT,
537
526
  custom_tags=dict([("autogen", True)]),
538
527
  )
539
- @telemetry.add_stmt_params_to_df(
540
- project=_PROJECT,
541
- subproject=_SUBPROJECT,
542
- custom_tags=dict([("autogen", True)]),
543
- )
544
528
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
545
529
  """Method not supported for this class.
546
530
 
@@ -597,7 +581,8 @@ class SpectralCoclustering(BaseTransformer):
597
581
  if False:
598
582
  self.fit(dataset)
599
583
  assert self._sklearn_object is not None
600
- return self._sklearn_object.labels_
584
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
585
+ return labels
601
586
  else:
602
587
  raise NotImplementedError
603
588
 
@@ -633,6 +618,7 @@ class SpectralCoclustering(BaseTransformer):
633
618
  output_cols = []
634
619
 
635
620
  # Make sure column names are valid snowflake identifiers.
621
+ assert output_cols is not None # Make MyPy happy
636
622
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
637
623
 
638
624
  return rv
@@ -643,11 +629,6 @@ class SpectralCoclustering(BaseTransformer):
643
629
  subproject=_SUBPROJECT,
644
630
  custom_tags=dict([("autogen", True)]),
645
631
  )
646
- @telemetry.add_stmt_params_to_df(
647
- project=_PROJECT,
648
- subproject=_SUBPROJECT,
649
- custom_tags=dict([("autogen", True)]),
650
- )
651
632
  def predict_proba(
652
633
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
653
634
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -688,11 +669,6 @@ class SpectralCoclustering(BaseTransformer):
688
669
  subproject=_SUBPROJECT,
689
670
  custom_tags=dict([("autogen", True)]),
690
671
  )
691
- @telemetry.add_stmt_params_to_df(
692
- project=_PROJECT,
693
- subproject=_SUBPROJECT,
694
- custom_tags=dict([("autogen", True)]),
695
- )
696
672
  def predict_log_proba(
697
673
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
698
674
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -729,16 +705,6 @@ class SpectralCoclustering(BaseTransformer):
729
705
  return output_df
730
706
 
731
707
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
732
- @telemetry.send_api_usage_telemetry(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
- @telemetry.add_stmt_params_to_df(
738
- project=_PROJECT,
739
- subproject=_SUBPROJECT,
740
- custom_tags=dict([("autogen", True)]),
741
- )
742
708
  def decision_function(
743
709
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
744
710
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -837,11 +803,6 @@ class SpectralCoclustering(BaseTransformer):
837
803
  subproject=_SUBPROJECT,
838
804
  custom_tags=dict([("autogen", True)]),
839
805
  )
840
- @telemetry.add_stmt_params_to_df(
841
- project=_PROJECT,
842
- subproject=_SUBPROJECT,
843
- custom_tags=dict([("autogen", True)]),
844
- )
845
806
  def kneighbors(
846
807
  self,
847
808
  dataset: Union[DataFrame, pd.DataFrame],
@@ -901,18 +862,28 @@ class SpectralCoclustering(BaseTransformer):
901
862
  # For classifier, the type of predict is the same as the type of label
902
863
  if self._sklearn_object._estimator_type == 'classifier':
903
864
  # label columns is the desired type for output
904
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
865
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
905
866
  # rename the output columns
906
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
867
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
868
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
869
+ ([] if self._drop_input_cols else inputs)
870
+ + outputs)
871
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
872
+ # For outlier models, returns -1 for outliers and 1 for inliers.
873
+ # Clusterer returns int64 cluster labels.
874
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
875
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
907
876
  self._model_signature_dict["predict"] = ModelSignature(inputs,
908
877
  ([] if self._drop_input_cols else inputs)
909
878
  + outputs)
879
+
910
880
  # For regressor, the type of predict is float64
911
881
  elif self._sklearn_object._estimator_type == 'regressor':
912
882
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
913
883
  self._model_signature_dict["predict"] = ModelSignature(inputs,
914
884
  ([] if self._drop_input_cols else inputs)
915
885
  + outputs)
886
+
916
887
  for prob_func in PROB_FUNCTIONS:
917
888
  if hasattr(self, prob_func):
918
889
  output_cols_prefix: str = f"{prob_func}_"