snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Ridge(BaseTransformer):
57
58
  r"""Linear least squares with l2 regularization
58
59
  For more details on this class, see [sklearn.linear_model.Ridge]
@@ -60,6 +61,51 @@ class Ridge(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: {float, ndarray of shape (n_targets,)}, default=1.0
64
110
  Constant that multiplies the L2 term, controlling regularization
65
111
  strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
@@ -149,35 +195,6 @@ class Ridge(BaseTransformer):
149
195
  random_state: int, RandomState instance, default=None
150
196
  Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
151
197
  See :term:`Glossary <random_state>` for details.
152
-
153
- input_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that contain features.
155
- If this parameter is not specified, all columns in the input DataFrame except
156
- the columns specified by label_cols and sample_weight_col parameters are
157
- considered input columns.
158
-
159
- label_cols: Optional[Union[str, List[str]]]
160
- A string or list of strings representing column names that contain labels.
161
- This is a required param for estimators, as there is no way to infer these
162
- columns. If this parameter is not specified, then object is fitted without
163
- labels (like a transformer).
164
-
165
- output_cols: Optional[Union[str, List[str]]]
166
- A string or list of strings representing column names that will store the
167
- output of predict and transform operations. The length of output_cols must
168
- match the expected number of output columns from the specific estimator or
169
- transformer class used.
170
- If this parameter is not specified, output column names are derived by
171
- adding an OUTPUT_ prefix to the label column names. These inferred output
172
- column names work for estimator's predict() method, but output_cols must
173
- be set explicitly for transformers.
174
-
175
- sample_weight_col: Optional[str]
176
- A string representing the column name containing the sample weights.
177
- This argument is only required when working with weighted datasets.
178
-
179
- drop_input_cols: Optional[bool], default=False
180
- If set, the response of predict(), transform() methods will not contain input columns.
181
198
  """
182
199
 
183
200
  def __init__( # type: ignore[no-untyped-def]
@@ -194,6 +211,7 @@ class Ridge(BaseTransformer):
194
211
  input_cols: Optional[Union[str, Iterable[str]]] = None,
195
212
  output_cols: Optional[Union[str, Iterable[str]]] = None,
196
213
  label_cols: Optional[Union[str, Iterable[str]]] = None,
214
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
197
215
  drop_input_cols: Optional[bool] = False,
198
216
  sample_weight_col: Optional[str] = None,
199
217
  ) -> None:
@@ -202,9 +220,10 @@ class Ridge(BaseTransformer):
202
220
  self.set_input_cols(input_cols)
203
221
  self.set_output_cols(output_cols)
204
222
  self.set_label_cols(label_cols)
223
+ self.set_passthrough_cols(passthrough_cols)
205
224
  self.set_drop_input_cols(drop_input_cols)
206
225
  self.set_sample_weight_col(sample_weight_col)
207
- deps = set(SklearnWrapperProvider().dependencies)
226
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
208
227
 
209
228
  self._deps = list(deps)
210
229
 
@@ -220,13 +239,14 @@ class Ridge(BaseTransformer):
220
239
  args=init_args,
221
240
  klass=sklearn.linear_model.Ridge
222
241
  )
223
- self._sklearn_object = sklearn.linear_model.Ridge(
242
+ self._sklearn_object: Any = sklearn.linear_model.Ridge(
224
243
  **cleaned_up_init_args,
225
244
  )
226
245
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
227
246
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
228
247
  self._snowpark_cols: Optional[List[str]] = self.input_cols
229
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Ridge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
248
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Ridge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
249
+ self._autogenerated = True
230
250
 
231
251
  def _get_rand_id(self) -> str:
232
252
  """
@@ -237,24 +257,6 @@ class Ridge(BaseTransformer):
237
257
  """
238
258
  return str(uuid4()).replace("-", "_").upper()
239
259
 
240
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
241
- """
242
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
243
-
244
- Args:
245
- dataset: Input dataset.
246
- """
247
- if not self.input_cols:
248
- cols = [
249
- c for c in dataset.columns
250
- if c not in self.get_label_cols() and c != self.sample_weight_col
251
- ]
252
- self.set_input_cols(input_cols=cols)
253
-
254
- if not self.output_cols:
255
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
256
- self.set_output_cols(output_cols=cols)
257
-
258
260
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Ridge":
259
261
  """
260
262
  Input columns setter.
@@ -300,54 +302,48 @@ class Ridge(BaseTransformer):
300
302
  self
301
303
  """
302
304
  self._infer_input_output_cols(dataset)
303
- if isinstance(dataset, pd.DataFrame):
304
- assert self._sklearn_object is not None # keep mypy happy
305
- self._sklearn_object = self._handlers.fit_pandas(
306
- dataset,
307
- self._sklearn_object,
308
- self.input_cols,
309
- self.label_cols,
310
- self.sample_weight_col
311
- )
312
- elif isinstance(dataset, DataFrame):
313
- self._fit_snowpark(dataset)
314
- else:
315
- raise TypeError(
316
- f"Unexpected dataset type: {type(dataset)}."
317
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
318
- )
305
+ if isinstance(dataset, DataFrame):
306
+ session = dataset._session
307
+ assert session is not None # keep mypy happy
308
+ # Validate that key package version in user workspace are supported in snowflake conda channel
309
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
310
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
311
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
312
+
313
+ # Specify input columns so column pruning will be enforced
314
+ selected_cols = self._get_active_columns()
315
+ if len(selected_cols) > 0:
316
+ dataset = dataset.select(selected_cols)
317
+
318
+ self._snowpark_cols = dataset.select(self.input_cols).columns
319
+
320
+ # If we are already in a stored procedure, no need to kick off another one.
321
+ if SNOWML_SPROC_ENV in os.environ:
322
+ statement_params = telemetry.get_function_usage_statement_params(
323
+ project=_PROJECT,
324
+ subproject=_SUBPROJECT,
325
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Ridge.__class__.__name__),
326
+ api_calls=[Session.call],
327
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
328
+ )
329
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
330
+ pd_df.columns = dataset.columns
331
+ dataset = pd_df
332
+
333
+ model_trainer = ModelTrainerBuilder.build(
334
+ estimator=self._sklearn_object,
335
+ dataset=dataset,
336
+ input_cols=self.input_cols,
337
+ label_cols=self.label_cols,
338
+ sample_weight_col=self.sample_weight_col,
339
+ autogenerated=self._autogenerated,
340
+ subproject=_SUBPROJECT
341
+ )
342
+ self._sklearn_object = model_trainer.train()
319
343
  self._is_fitted = True
320
344
  self._get_model_signatures(dataset)
321
345
  return self
322
346
 
323
- def _fit_snowpark(self, dataset: DataFrame) -> None:
324
- session = dataset._session
325
- assert session is not None # keep mypy happy
326
- # Validate that key package version in user workspace are supported in snowflake conda channel
327
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
328
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
329
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
330
-
331
- # Specify input columns so column pruning will be enforced
332
- selected_cols = self._get_active_columns()
333
- if len(selected_cols) > 0:
334
- dataset = dataset.select(selected_cols)
335
-
336
- estimator = self._sklearn_object
337
- assert estimator is not None # Keep mypy happy
338
-
339
- self._snowpark_cols = dataset.select(self.input_cols).columns
340
-
341
- self._sklearn_object = self._handlers.fit_snowpark(
342
- dataset,
343
- session,
344
- estimator,
345
- ["snowflake-snowpark-python"] + self._get_dependencies(),
346
- self.input_cols,
347
- self.label_cols,
348
- self.sample_weight_col,
349
- )
350
-
351
347
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
352
348
  if self._drop_input_cols:
353
349
  return []
@@ -535,11 +531,6 @@ class Ridge(BaseTransformer):
535
531
  subproject=_SUBPROJECT,
536
532
  custom_tags=dict([("autogen", True)]),
537
533
  )
538
- @telemetry.add_stmt_params_to_df(
539
- project=_PROJECT,
540
- subproject=_SUBPROJECT,
541
- custom_tags=dict([("autogen", True)]),
542
- )
543
534
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
544
535
  """Predict using the linear model
545
536
  For more details on this function, see [sklearn.linear_model.Ridge.predict]
@@ -593,11 +584,6 @@ class Ridge(BaseTransformer):
593
584
  subproject=_SUBPROJECT,
594
585
  custom_tags=dict([("autogen", True)]),
595
586
  )
596
- @telemetry.add_stmt_params_to_df(
597
- project=_PROJECT,
598
- subproject=_SUBPROJECT,
599
- custom_tags=dict([("autogen", True)]),
600
- )
601
587
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
602
588
  """Method not supported for this class.
603
589
 
@@ -654,7 +640,8 @@ class Ridge(BaseTransformer):
654
640
  if False:
655
641
  self.fit(dataset)
656
642
  assert self._sklearn_object is not None
657
- return self._sklearn_object.labels_
643
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
644
+ return labels
658
645
  else:
659
646
  raise NotImplementedError
660
647
 
@@ -690,6 +677,7 @@ class Ridge(BaseTransformer):
690
677
  output_cols = []
691
678
 
692
679
  # Make sure column names are valid snowflake identifiers.
680
+ assert output_cols is not None # Make MyPy happy
693
681
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
694
682
 
695
683
  return rv
@@ -700,11 +688,6 @@ class Ridge(BaseTransformer):
700
688
  subproject=_SUBPROJECT,
701
689
  custom_tags=dict([("autogen", True)]),
702
690
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
691
  def predict_proba(
709
692
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
710
693
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -745,11 +728,6 @@ class Ridge(BaseTransformer):
745
728
  subproject=_SUBPROJECT,
746
729
  custom_tags=dict([("autogen", True)]),
747
730
  )
748
- @telemetry.add_stmt_params_to_df(
749
- project=_PROJECT,
750
- subproject=_SUBPROJECT,
751
- custom_tags=dict([("autogen", True)]),
752
- )
753
731
  def predict_log_proba(
754
732
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
755
733
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -786,16 +764,6 @@ class Ridge(BaseTransformer):
786
764
  return output_df
787
765
 
788
766
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
789
- @telemetry.send_api_usage_telemetry(
790
- project=_PROJECT,
791
- subproject=_SUBPROJECT,
792
- custom_tags=dict([("autogen", True)]),
793
- )
794
- @telemetry.add_stmt_params_to_df(
795
- project=_PROJECT,
796
- subproject=_SUBPROJECT,
797
- custom_tags=dict([("autogen", True)]),
798
- )
799
767
  def decision_function(
800
768
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
801
769
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -896,11 +864,6 @@ class Ridge(BaseTransformer):
896
864
  subproject=_SUBPROJECT,
897
865
  custom_tags=dict([("autogen", True)]),
898
866
  )
899
- @telemetry.add_stmt_params_to_df(
900
- project=_PROJECT,
901
- subproject=_SUBPROJECT,
902
- custom_tags=dict([("autogen", True)]),
903
- )
904
867
  def kneighbors(
905
868
  self,
906
869
  dataset: Union[DataFrame, pd.DataFrame],
@@ -960,18 +923,28 @@ class Ridge(BaseTransformer):
960
923
  # For classifier, the type of predict is the same as the type of label
961
924
  if self._sklearn_object._estimator_type == 'classifier':
962
925
  # label columns is the desired type for output
963
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
926
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
964
927
  # rename the output columns
965
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
928
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
966
929
  self._model_signature_dict["predict"] = ModelSignature(inputs,
967
930
  ([] if self._drop_input_cols else inputs)
968
931
  + outputs)
932
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
933
+ # For outlier models, returns -1 for outliers and 1 for inliers.
934
+ # Clusterer returns int64 cluster labels.
935
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
936
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
937
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
938
+ ([] if self._drop_input_cols else inputs)
939
+ + outputs)
940
+
969
941
  # For regressor, the type of predict is float64
970
942
  elif self._sklearn_object._estimator_type == 'regressor':
971
943
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
972
944
  self._model_signature_dict["predict"] = ModelSignature(inputs,
973
945
  ([] if self._drop_input_cols else inputs)
974
946
  + outputs)
947
+
975
948
  for prob_func in PROB_FUNCTIONS:
976
949
  if hasattr(self, prob_func):
977
950
  output_cols_prefix: str = f"{prob_func}_"