snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Ridge(BaseTransformer):
|
57
58
|
r"""Linear least squares with l2 regularization
|
58
59
|
For more details on this class, see [sklearn.linear_model.Ridge]
|
@@ -60,6 +61,51 @@ class Ridge(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: {float, ndarray of shape (n_targets,)}, default=1.0
|
64
110
|
Constant that multiplies the L2 term, controlling regularization
|
65
111
|
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
|
@@ -149,35 +195,6 @@ class Ridge(BaseTransformer):
|
|
149
195
|
random_state: int, RandomState instance, default=None
|
150
196
|
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
|
151
197
|
See :term:`Glossary <random_state>` for details.
|
152
|
-
|
153
|
-
input_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that contain features.
|
155
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
156
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
157
|
-
considered input columns.
|
158
|
-
|
159
|
-
label_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or list of strings representing column names that contain labels.
|
161
|
-
This is a required param for estimators, as there is no way to infer these
|
162
|
-
columns. If this parameter is not specified, then object is fitted without
|
163
|
-
labels (like a transformer).
|
164
|
-
|
165
|
-
output_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or list of strings representing column names that will store the
|
167
|
-
output of predict and transform operations. The length of output_cols must
|
168
|
-
match the expected number of output columns from the specific estimator or
|
169
|
-
transformer class used.
|
170
|
-
If this parameter is not specified, output column names are derived by
|
171
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
172
|
-
column names work for estimator's predict() method, but output_cols must
|
173
|
-
be set explicitly for transformers.
|
174
|
-
|
175
|
-
sample_weight_col: Optional[str]
|
176
|
-
A string representing the column name containing the sample weights.
|
177
|
-
This argument is only required when working with weighted datasets.
|
178
|
-
|
179
|
-
drop_input_cols: Optional[bool], default=False
|
180
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
181
198
|
"""
|
182
199
|
|
183
200
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -194,6 +211,7 @@ class Ridge(BaseTransformer):
|
|
194
211
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
195
212
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
196
213
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
214
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
197
215
|
drop_input_cols: Optional[bool] = False,
|
198
216
|
sample_weight_col: Optional[str] = None,
|
199
217
|
) -> None:
|
@@ -202,9 +220,10 @@ class Ridge(BaseTransformer):
|
|
202
220
|
self.set_input_cols(input_cols)
|
203
221
|
self.set_output_cols(output_cols)
|
204
222
|
self.set_label_cols(label_cols)
|
223
|
+
self.set_passthrough_cols(passthrough_cols)
|
205
224
|
self.set_drop_input_cols(drop_input_cols)
|
206
225
|
self.set_sample_weight_col(sample_weight_col)
|
207
|
-
deps = set(
|
226
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
208
227
|
|
209
228
|
self._deps = list(deps)
|
210
229
|
|
@@ -220,13 +239,14 @@ class Ridge(BaseTransformer):
|
|
220
239
|
args=init_args,
|
221
240
|
klass=sklearn.linear_model.Ridge
|
222
241
|
)
|
223
|
-
self._sklearn_object = sklearn.linear_model.Ridge(
|
242
|
+
self._sklearn_object: Any = sklearn.linear_model.Ridge(
|
224
243
|
**cleaned_up_init_args,
|
225
244
|
)
|
226
245
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
227
246
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
228
247
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
229
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Ridge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
248
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Ridge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
249
|
+
self._autogenerated = True
|
230
250
|
|
231
251
|
def _get_rand_id(self) -> str:
|
232
252
|
"""
|
@@ -237,24 +257,6 @@ class Ridge(BaseTransformer):
|
|
237
257
|
"""
|
238
258
|
return str(uuid4()).replace("-", "_").upper()
|
239
259
|
|
240
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
241
|
-
"""
|
242
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
243
|
-
|
244
|
-
Args:
|
245
|
-
dataset: Input dataset.
|
246
|
-
"""
|
247
|
-
if not self.input_cols:
|
248
|
-
cols = [
|
249
|
-
c for c in dataset.columns
|
250
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
251
|
-
]
|
252
|
-
self.set_input_cols(input_cols=cols)
|
253
|
-
|
254
|
-
if not self.output_cols:
|
255
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
256
|
-
self.set_output_cols(output_cols=cols)
|
257
|
-
|
258
260
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Ridge":
|
259
261
|
"""
|
260
262
|
Input columns setter.
|
@@ -300,54 +302,48 @@ class Ridge(BaseTransformer):
|
|
300
302
|
self
|
301
303
|
"""
|
302
304
|
self._infer_input_output_cols(dataset)
|
303
|
-
if isinstance(dataset,
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
self.
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
305
|
+
if isinstance(dataset, DataFrame):
|
306
|
+
session = dataset._session
|
307
|
+
assert session is not None # keep mypy happy
|
308
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
+
|
313
|
+
# Specify input columns so column pruning will be enforced
|
314
|
+
selected_cols = self._get_active_columns()
|
315
|
+
if len(selected_cols) > 0:
|
316
|
+
dataset = dataset.select(selected_cols)
|
317
|
+
|
318
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
319
|
+
|
320
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
321
|
+
if SNOWML_SPROC_ENV in os.environ:
|
322
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
323
|
+
project=_PROJECT,
|
324
|
+
subproject=_SUBPROJECT,
|
325
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Ridge.__class__.__name__),
|
326
|
+
api_calls=[Session.call],
|
327
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
328
|
+
)
|
329
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
330
|
+
pd_df.columns = dataset.columns
|
331
|
+
dataset = pd_df
|
332
|
+
|
333
|
+
model_trainer = ModelTrainerBuilder.build(
|
334
|
+
estimator=self._sklearn_object,
|
335
|
+
dataset=dataset,
|
336
|
+
input_cols=self.input_cols,
|
337
|
+
label_cols=self.label_cols,
|
338
|
+
sample_weight_col=self.sample_weight_col,
|
339
|
+
autogenerated=self._autogenerated,
|
340
|
+
subproject=_SUBPROJECT
|
341
|
+
)
|
342
|
+
self._sklearn_object = model_trainer.train()
|
319
343
|
self._is_fitted = True
|
320
344
|
self._get_model_signatures(dataset)
|
321
345
|
return self
|
322
346
|
|
323
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
324
|
-
session = dataset._session
|
325
|
-
assert session is not None # keep mypy happy
|
326
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
327
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
328
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
329
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
330
|
-
|
331
|
-
# Specify input columns so column pruning will be enforced
|
332
|
-
selected_cols = self._get_active_columns()
|
333
|
-
if len(selected_cols) > 0:
|
334
|
-
dataset = dataset.select(selected_cols)
|
335
|
-
|
336
|
-
estimator = self._sklearn_object
|
337
|
-
assert estimator is not None # Keep mypy happy
|
338
|
-
|
339
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
340
|
-
|
341
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
342
|
-
dataset,
|
343
|
-
session,
|
344
|
-
estimator,
|
345
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
346
|
-
self.input_cols,
|
347
|
-
self.label_cols,
|
348
|
-
self.sample_weight_col,
|
349
|
-
)
|
350
|
-
|
351
347
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
352
348
|
if self._drop_input_cols:
|
353
349
|
return []
|
@@ -535,11 +531,6 @@ class Ridge(BaseTransformer):
|
|
535
531
|
subproject=_SUBPROJECT,
|
536
532
|
custom_tags=dict([("autogen", True)]),
|
537
533
|
)
|
538
|
-
@telemetry.add_stmt_params_to_df(
|
539
|
-
project=_PROJECT,
|
540
|
-
subproject=_SUBPROJECT,
|
541
|
-
custom_tags=dict([("autogen", True)]),
|
542
|
-
)
|
543
534
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
544
535
|
"""Predict using the linear model
|
545
536
|
For more details on this function, see [sklearn.linear_model.Ridge.predict]
|
@@ -593,11 +584,6 @@ class Ridge(BaseTransformer):
|
|
593
584
|
subproject=_SUBPROJECT,
|
594
585
|
custom_tags=dict([("autogen", True)]),
|
595
586
|
)
|
596
|
-
@telemetry.add_stmt_params_to_df(
|
597
|
-
project=_PROJECT,
|
598
|
-
subproject=_SUBPROJECT,
|
599
|
-
custom_tags=dict([("autogen", True)]),
|
600
|
-
)
|
601
587
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
602
588
|
"""Method not supported for this class.
|
603
589
|
|
@@ -654,7 +640,8 @@ class Ridge(BaseTransformer):
|
|
654
640
|
if False:
|
655
641
|
self.fit(dataset)
|
656
642
|
assert self._sklearn_object is not None
|
657
|
-
|
643
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
644
|
+
return labels
|
658
645
|
else:
|
659
646
|
raise NotImplementedError
|
660
647
|
|
@@ -690,6 +677,7 @@ class Ridge(BaseTransformer):
|
|
690
677
|
output_cols = []
|
691
678
|
|
692
679
|
# Make sure column names are valid snowflake identifiers.
|
680
|
+
assert output_cols is not None # Make MyPy happy
|
693
681
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
694
682
|
|
695
683
|
return rv
|
@@ -700,11 +688,6 @@ class Ridge(BaseTransformer):
|
|
700
688
|
subproject=_SUBPROJECT,
|
701
689
|
custom_tags=dict([("autogen", True)]),
|
702
690
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
691
|
def predict_proba(
|
709
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
710
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -745,11 +728,6 @@ class Ridge(BaseTransformer):
|
|
745
728
|
subproject=_SUBPROJECT,
|
746
729
|
custom_tags=dict([("autogen", True)]),
|
747
730
|
)
|
748
|
-
@telemetry.add_stmt_params_to_df(
|
749
|
-
project=_PROJECT,
|
750
|
-
subproject=_SUBPROJECT,
|
751
|
-
custom_tags=dict([("autogen", True)]),
|
752
|
-
)
|
753
731
|
def predict_log_proba(
|
754
732
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
755
733
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -786,16 +764,6 @@ class Ridge(BaseTransformer):
|
|
786
764
|
return output_df
|
787
765
|
|
788
766
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
789
|
-
@telemetry.send_api_usage_telemetry(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
|
-
@telemetry.add_stmt_params_to_df(
|
795
|
-
project=_PROJECT,
|
796
|
-
subproject=_SUBPROJECT,
|
797
|
-
custom_tags=dict([("autogen", True)]),
|
798
|
-
)
|
799
767
|
def decision_function(
|
800
768
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
801
769
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -896,11 +864,6 @@ class Ridge(BaseTransformer):
|
|
896
864
|
subproject=_SUBPROJECT,
|
897
865
|
custom_tags=dict([("autogen", True)]),
|
898
866
|
)
|
899
|
-
@telemetry.add_stmt_params_to_df(
|
900
|
-
project=_PROJECT,
|
901
|
-
subproject=_SUBPROJECT,
|
902
|
-
custom_tags=dict([("autogen", True)]),
|
903
|
-
)
|
904
867
|
def kneighbors(
|
905
868
|
self,
|
906
869
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -960,18 +923,28 @@ class Ridge(BaseTransformer):
|
|
960
923
|
# For classifier, the type of predict is the same as the type of label
|
961
924
|
if self._sklearn_object._estimator_type == 'classifier':
|
962
925
|
# label columns is the desired type for output
|
963
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
926
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
964
927
|
# rename the output columns
|
965
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
928
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
966
929
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
967
930
|
([] if self._drop_input_cols else inputs)
|
968
931
|
+ outputs)
|
932
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
933
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
934
|
+
# Clusterer returns int64 cluster labels.
|
935
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
936
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
937
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
938
|
+
([] if self._drop_input_cols else inputs)
|
939
|
+
+ outputs)
|
940
|
+
|
969
941
|
# For regressor, the type of predict is float64
|
970
942
|
elif self._sklearn_object._estimator_type == 'regressor':
|
971
943
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
972
944
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
973
945
|
([] if self._drop_input_cols else inputs)
|
974
946
|
+ outputs)
|
947
|
+
|
975
948
|
for prob_func in PROB_FUNCTIONS:
|
976
949
|
if hasattr(self, prob_func):
|
977
950
|
output_cols_prefix: str = f"{prob_func}_"
|