snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PassiveAggressiveClassifier(BaseTransformer):
|
57
58
|
r"""Passive Aggressive Classifier
|
58
59
|
For more details on this class, see [sklearn.linear_model.PassiveAggressiveClassifier]
|
@@ -60,6 +61,51 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
C: float, default=1.0
|
64
110
|
Maximum step size (regularization). Defaults to 1.0.
|
65
111
|
|
@@ -139,35 +185,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
139
185
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
140
186
|
averaging will begin once the total number of samples seen reaches
|
141
187
|
average. So average=10 will begin averaging after seeing 10 samples.
|
142
|
-
|
143
|
-
input_cols: Optional[Union[str, List[str]]]
|
144
|
-
A string or list of strings representing column names that contain features.
|
145
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
146
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
147
|
-
considered input columns.
|
148
|
-
|
149
|
-
label_cols: Optional[Union[str, List[str]]]
|
150
|
-
A string or list of strings representing column names that contain labels.
|
151
|
-
This is a required param for estimators, as there is no way to infer these
|
152
|
-
columns. If this parameter is not specified, then object is fitted without
|
153
|
-
labels (like a transformer).
|
154
|
-
|
155
|
-
output_cols: Optional[Union[str, List[str]]]
|
156
|
-
A string or list of strings representing column names that will store the
|
157
|
-
output of predict and transform operations. The length of output_cols must
|
158
|
-
match the expected number of output columns from the specific estimator or
|
159
|
-
transformer class used.
|
160
|
-
If this parameter is not specified, output column names are derived by
|
161
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
162
|
-
column names work for estimator's predict() method, but output_cols must
|
163
|
-
be set explicitly for transformers.
|
164
|
-
|
165
|
-
sample_weight_col: Optional[str]
|
166
|
-
A string representing the column name containing the sample weights.
|
167
|
-
This argument is only required when working with weighted datasets.
|
168
|
-
|
169
|
-
drop_input_cols: Optional[bool], default=False
|
170
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
171
188
|
"""
|
172
189
|
|
173
190
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -191,6 +208,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
191
208
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
192
209
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
193
210
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
211
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
194
212
|
drop_input_cols: Optional[bool] = False,
|
195
213
|
sample_weight_col: Optional[str] = None,
|
196
214
|
) -> None:
|
@@ -199,9 +217,10 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
199
217
|
self.set_input_cols(input_cols)
|
200
218
|
self.set_output_cols(output_cols)
|
201
219
|
self.set_label_cols(label_cols)
|
220
|
+
self.set_passthrough_cols(passthrough_cols)
|
202
221
|
self.set_drop_input_cols(drop_input_cols)
|
203
222
|
self.set_sample_weight_col(sample_weight_col)
|
204
|
-
deps = set(
|
223
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
205
224
|
|
206
225
|
self._deps = list(deps)
|
207
226
|
|
@@ -224,13 +243,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
224
243
|
args=init_args,
|
225
244
|
klass=sklearn.linear_model.PassiveAggressiveClassifier
|
226
245
|
)
|
227
|
-
self._sklearn_object = sklearn.linear_model.PassiveAggressiveClassifier(
|
246
|
+
self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveClassifier(
|
228
247
|
**cleaned_up_init_args,
|
229
248
|
)
|
230
249
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
231
250
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
232
251
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
233
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
252
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
253
|
+
self._autogenerated = True
|
234
254
|
|
235
255
|
def _get_rand_id(self) -> str:
|
236
256
|
"""
|
@@ -241,24 +261,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
241
261
|
"""
|
242
262
|
return str(uuid4()).replace("-", "_").upper()
|
243
263
|
|
244
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
245
|
-
"""
|
246
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
247
|
-
|
248
|
-
Args:
|
249
|
-
dataset: Input dataset.
|
250
|
-
"""
|
251
|
-
if not self.input_cols:
|
252
|
-
cols = [
|
253
|
-
c for c in dataset.columns
|
254
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
255
|
-
]
|
256
|
-
self.set_input_cols(input_cols=cols)
|
257
|
-
|
258
|
-
if not self.output_cols:
|
259
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
260
|
-
self.set_output_cols(output_cols=cols)
|
261
|
-
|
262
264
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PassiveAggressiveClassifier":
|
263
265
|
"""
|
264
266
|
Input columns setter.
|
@@ -304,54 +306,48 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
304
306
|
self
|
305
307
|
"""
|
306
308
|
self._infer_input_output_cols(dataset)
|
307
|
-
if isinstance(dataset,
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
self.
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
309
|
+
if isinstance(dataset, DataFrame):
|
310
|
+
session = dataset._session
|
311
|
+
assert session is not None # keep mypy happy
|
312
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
313
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
314
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
315
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
316
|
+
|
317
|
+
# Specify input columns so column pruning will be enforced
|
318
|
+
selected_cols = self._get_active_columns()
|
319
|
+
if len(selected_cols) > 0:
|
320
|
+
dataset = dataset.select(selected_cols)
|
321
|
+
|
322
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
323
|
+
|
324
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
325
|
+
if SNOWML_SPROC_ENV in os.environ:
|
326
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
327
|
+
project=_PROJECT,
|
328
|
+
subproject=_SUBPROJECT,
|
329
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__),
|
330
|
+
api_calls=[Session.call],
|
331
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
332
|
+
)
|
333
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
334
|
+
pd_df.columns = dataset.columns
|
335
|
+
dataset = pd_df
|
336
|
+
|
337
|
+
model_trainer = ModelTrainerBuilder.build(
|
338
|
+
estimator=self._sklearn_object,
|
339
|
+
dataset=dataset,
|
340
|
+
input_cols=self.input_cols,
|
341
|
+
label_cols=self.label_cols,
|
342
|
+
sample_weight_col=self.sample_weight_col,
|
343
|
+
autogenerated=self._autogenerated,
|
344
|
+
subproject=_SUBPROJECT
|
345
|
+
)
|
346
|
+
self._sklearn_object = model_trainer.train()
|
323
347
|
self._is_fitted = True
|
324
348
|
self._get_model_signatures(dataset)
|
325
349
|
return self
|
326
350
|
|
327
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
328
|
-
session = dataset._session
|
329
|
-
assert session is not None # keep mypy happy
|
330
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
331
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
332
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
333
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
334
|
-
|
335
|
-
# Specify input columns so column pruning will be enforced
|
336
|
-
selected_cols = self._get_active_columns()
|
337
|
-
if len(selected_cols) > 0:
|
338
|
-
dataset = dataset.select(selected_cols)
|
339
|
-
|
340
|
-
estimator = self._sklearn_object
|
341
|
-
assert estimator is not None # Keep mypy happy
|
342
|
-
|
343
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
344
|
-
|
345
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
346
|
-
dataset,
|
347
|
-
session,
|
348
|
-
estimator,
|
349
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
350
|
-
self.input_cols,
|
351
|
-
self.label_cols,
|
352
|
-
self.sample_weight_col,
|
353
|
-
)
|
354
|
-
|
355
351
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
356
352
|
if self._drop_input_cols:
|
357
353
|
return []
|
@@ -539,11 +535,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
539
535
|
subproject=_SUBPROJECT,
|
540
536
|
custom_tags=dict([("autogen", True)]),
|
541
537
|
)
|
542
|
-
@telemetry.add_stmt_params_to_df(
|
543
|
-
project=_PROJECT,
|
544
|
-
subproject=_SUBPROJECT,
|
545
|
-
custom_tags=dict([("autogen", True)]),
|
546
|
-
)
|
547
538
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
548
539
|
"""Predict class labels for samples in X
|
549
540
|
For more details on this function, see [sklearn.linear_model.PassiveAggressiveClassifier.predict]
|
@@ -597,11 +588,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
597
588
|
subproject=_SUBPROJECT,
|
598
589
|
custom_tags=dict([("autogen", True)]),
|
599
590
|
)
|
600
|
-
@telemetry.add_stmt_params_to_df(
|
601
|
-
project=_PROJECT,
|
602
|
-
subproject=_SUBPROJECT,
|
603
|
-
custom_tags=dict([("autogen", True)]),
|
604
|
-
)
|
605
591
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
606
592
|
"""Method not supported for this class.
|
607
593
|
|
@@ -658,7 +644,8 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
658
644
|
if False:
|
659
645
|
self.fit(dataset)
|
660
646
|
assert self._sklearn_object is not None
|
661
|
-
|
647
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
648
|
+
return labels
|
662
649
|
else:
|
663
650
|
raise NotImplementedError
|
664
651
|
|
@@ -694,6 +681,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
694
681
|
output_cols = []
|
695
682
|
|
696
683
|
# Make sure column names are valid snowflake identifiers.
|
684
|
+
assert output_cols is not None # Make MyPy happy
|
697
685
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
698
686
|
|
699
687
|
return rv
|
@@ -704,11 +692,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
704
692
|
subproject=_SUBPROJECT,
|
705
693
|
custom_tags=dict([("autogen", True)]),
|
706
694
|
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
695
|
def predict_proba(
|
713
696
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
714
697
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -749,11 +732,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
749
732
|
subproject=_SUBPROJECT,
|
750
733
|
custom_tags=dict([("autogen", True)]),
|
751
734
|
)
|
752
|
-
@telemetry.add_stmt_params_to_df(
|
753
|
-
project=_PROJECT,
|
754
|
-
subproject=_SUBPROJECT,
|
755
|
-
custom_tags=dict([("autogen", True)]),
|
756
|
-
)
|
757
735
|
def predict_log_proba(
|
758
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
759
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -790,16 +768,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
790
768
|
return output_df
|
791
769
|
|
792
770
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
793
|
-
@telemetry.send_api_usage_telemetry(
|
794
|
-
project=_PROJECT,
|
795
|
-
subproject=_SUBPROJECT,
|
796
|
-
custom_tags=dict([("autogen", True)]),
|
797
|
-
)
|
798
|
-
@telemetry.add_stmt_params_to_df(
|
799
|
-
project=_PROJECT,
|
800
|
-
subproject=_SUBPROJECT,
|
801
|
-
custom_tags=dict([("autogen", True)]),
|
802
|
-
)
|
803
771
|
def decision_function(
|
804
772
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
805
773
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -902,11 +870,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
902
870
|
subproject=_SUBPROJECT,
|
903
871
|
custom_tags=dict([("autogen", True)]),
|
904
872
|
)
|
905
|
-
@telemetry.add_stmt_params_to_df(
|
906
|
-
project=_PROJECT,
|
907
|
-
subproject=_SUBPROJECT,
|
908
|
-
custom_tags=dict([("autogen", True)]),
|
909
|
-
)
|
910
873
|
def kneighbors(
|
911
874
|
self,
|
912
875
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -966,18 +929,28 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
966
929
|
# For classifier, the type of predict is the same as the type of label
|
967
930
|
if self._sklearn_object._estimator_type == 'classifier':
|
968
931
|
# label columns is the desired type for output
|
969
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
932
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
970
933
|
# rename the output columns
|
971
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
934
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
972
935
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
973
936
|
([] if self._drop_input_cols else inputs)
|
974
937
|
+ outputs)
|
938
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
939
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
940
|
+
# Clusterer returns int64 cluster labels.
|
941
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
942
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
943
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
944
|
+
([] if self._drop_input_cols else inputs)
|
945
|
+
+ outputs)
|
946
|
+
|
975
947
|
# For regressor, the type of predict is float64
|
976
948
|
elif self._sklearn_object._estimator_type == 'regressor':
|
977
949
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
978
950
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
979
951
|
([] if self._drop_input_cols else inputs)
|
980
952
|
+ outputs)
|
953
|
+
|
981
954
|
for prob_func in PROB_FUNCTIONS:
|
982
955
|
if hasattr(self, prob_func):
|
983
956
|
output_cols_prefix: str = f"{prob_func}_"
|