snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class PassiveAggressiveClassifier(BaseTransformer):
57
58
  r"""Passive Aggressive Classifier
58
59
  For more details on this class, see [sklearn.linear_model.PassiveAggressiveClassifier]
@@ -60,6 +61,51 @@ class PassiveAggressiveClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  C: float, default=1.0
64
110
  Maximum step size (regularization). Defaults to 1.0.
65
111
 
@@ -139,35 +185,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
139
185
  result in the ``coef_`` attribute. If set to an int greater than 1,
140
186
  averaging will begin once the total number of samples seen reaches
141
187
  average. So average=10 will begin averaging after seeing 10 samples.
142
-
143
- input_cols: Optional[Union[str, List[str]]]
144
- A string or list of strings representing column names that contain features.
145
- If this parameter is not specified, all columns in the input DataFrame except
146
- the columns specified by label_cols and sample_weight_col parameters are
147
- considered input columns.
148
-
149
- label_cols: Optional[Union[str, List[str]]]
150
- A string or list of strings representing column names that contain labels.
151
- This is a required param for estimators, as there is no way to infer these
152
- columns. If this parameter is not specified, then object is fitted without
153
- labels (like a transformer).
154
-
155
- output_cols: Optional[Union[str, List[str]]]
156
- A string or list of strings representing column names that will store the
157
- output of predict and transform operations. The length of output_cols must
158
- match the expected number of output columns from the specific estimator or
159
- transformer class used.
160
- If this parameter is not specified, output column names are derived by
161
- adding an OUTPUT_ prefix to the label column names. These inferred output
162
- column names work for estimator's predict() method, but output_cols must
163
- be set explicitly for transformers.
164
-
165
- sample_weight_col: Optional[str]
166
- A string representing the column name containing the sample weights.
167
- This argument is only required when working with weighted datasets.
168
-
169
- drop_input_cols: Optional[bool], default=False
170
- If set, the response of predict(), transform() methods will not contain input columns.
171
188
  """
172
189
 
173
190
  def __init__( # type: ignore[no-untyped-def]
@@ -191,6 +208,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
191
208
  input_cols: Optional[Union[str, Iterable[str]]] = None,
192
209
  output_cols: Optional[Union[str, Iterable[str]]] = None,
193
210
  label_cols: Optional[Union[str, Iterable[str]]] = None,
211
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
194
212
  drop_input_cols: Optional[bool] = False,
195
213
  sample_weight_col: Optional[str] = None,
196
214
  ) -> None:
@@ -199,9 +217,10 @@ class PassiveAggressiveClassifier(BaseTransformer):
199
217
  self.set_input_cols(input_cols)
200
218
  self.set_output_cols(output_cols)
201
219
  self.set_label_cols(label_cols)
220
+ self.set_passthrough_cols(passthrough_cols)
202
221
  self.set_drop_input_cols(drop_input_cols)
203
222
  self.set_sample_weight_col(sample_weight_col)
204
- deps = set(SklearnWrapperProvider().dependencies)
223
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
205
224
 
206
225
  self._deps = list(deps)
207
226
 
@@ -224,13 +243,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
224
243
  args=init_args,
225
244
  klass=sklearn.linear_model.PassiveAggressiveClassifier
226
245
  )
227
- self._sklearn_object = sklearn.linear_model.PassiveAggressiveClassifier(
246
+ self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveClassifier(
228
247
  **cleaned_up_init_args,
229
248
  )
230
249
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
231
250
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
232
251
  self._snowpark_cols: Optional[List[str]] = self.input_cols
233
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
252
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
253
+ self._autogenerated = True
234
254
 
235
255
  def _get_rand_id(self) -> str:
236
256
  """
@@ -241,24 +261,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
241
261
  """
242
262
  return str(uuid4()).replace("-", "_").upper()
243
263
 
244
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
245
- """
246
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
247
-
248
- Args:
249
- dataset: Input dataset.
250
- """
251
- if not self.input_cols:
252
- cols = [
253
- c for c in dataset.columns
254
- if c not in self.get_label_cols() and c != self.sample_weight_col
255
- ]
256
- self.set_input_cols(input_cols=cols)
257
-
258
- if not self.output_cols:
259
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
260
- self.set_output_cols(output_cols=cols)
261
-
262
264
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PassiveAggressiveClassifier":
263
265
  """
264
266
  Input columns setter.
@@ -304,54 +306,48 @@ class PassiveAggressiveClassifier(BaseTransformer):
304
306
  self
305
307
  """
306
308
  self._infer_input_output_cols(dataset)
307
- if isinstance(dataset, pd.DataFrame):
308
- assert self._sklearn_object is not None # keep mypy happy
309
- self._sklearn_object = self._handlers.fit_pandas(
310
- dataset,
311
- self._sklearn_object,
312
- self.input_cols,
313
- self.label_cols,
314
- self.sample_weight_col
315
- )
316
- elif isinstance(dataset, DataFrame):
317
- self._fit_snowpark(dataset)
318
- else:
319
- raise TypeError(
320
- f"Unexpected dataset type: {type(dataset)}."
321
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
322
- )
309
+ if isinstance(dataset, DataFrame):
310
+ session = dataset._session
311
+ assert session is not None # keep mypy happy
312
+ # Validate that key package version in user workspace are supported in snowflake conda channel
313
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
314
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
315
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
316
+
317
+ # Specify input columns so column pruning will be enforced
318
+ selected_cols = self._get_active_columns()
319
+ if len(selected_cols) > 0:
320
+ dataset = dataset.select(selected_cols)
321
+
322
+ self._snowpark_cols = dataset.select(self.input_cols).columns
323
+
324
+ # If we are already in a stored procedure, no need to kick off another one.
325
+ if SNOWML_SPROC_ENV in os.environ:
326
+ statement_params = telemetry.get_function_usage_statement_params(
327
+ project=_PROJECT,
328
+ subproject=_SUBPROJECT,
329
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__),
330
+ api_calls=[Session.call],
331
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
332
+ )
333
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
334
+ pd_df.columns = dataset.columns
335
+ dataset = pd_df
336
+
337
+ model_trainer = ModelTrainerBuilder.build(
338
+ estimator=self._sklearn_object,
339
+ dataset=dataset,
340
+ input_cols=self.input_cols,
341
+ label_cols=self.label_cols,
342
+ sample_weight_col=self.sample_weight_col,
343
+ autogenerated=self._autogenerated,
344
+ subproject=_SUBPROJECT
345
+ )
346
+ self._sklearn_object = model_trainer.train()
323
347
  self._is_fitted = True
324
348
  self._get_model_signatures(dataset)
325
349
  return self
326
350
 
327
- def _fit_snowpark(self, dataset: DataFrame) -> None:
328
- session = dataset._session
329
- assert session is not None # keep mypy happy
330
- # Validate that key package version in user workspace are supported in snowflake conda channel
331
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
332
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
333
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
334
-
335
- # Specify input columns so column pruning will be enforced
336
- selected_cols = self._get_active_columns()
337
- if len(selected_cols) > 0:
338
- dataset = dataset.select(selected_cols)
339
-
340
- estimator = self._sklearn_object
341
- assert estimator is not None # Keep mypy happy
342
-
343
- self._snowpark_cols = dataset.select(self.input_cols).columns
344
-
345
- self._sklearn_object = self._handlers.fit_snowpark(
346
- dataset,
347
- session,
348
- estimator,
349
- ["snowflake-snowpark-python"] + self._get_dependencies(),
350
- self.input_cols,
351
- self.label_cols,
352
- self.sample_weight_col,
353
- )
354
-
355
351
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
356
352
  if self._drop_input_cols:
357
353
  return []
@@ -539,11 +535,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
539
535
  subproject=_SUBPROJECT,
540
536
  custom_tags=dict([("autogen", True)]),
541
537
  )
542
- @telemetry.add_stmt_params_to_df(
543
- project=_PROJECT,
544
- subproject=_SUBPROJECT,
545
- custom_tags=dict([("autogen", True)]),
546
- )
547
538
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
548
539
  """Predict class labels for samples in X
549
540
  For more details on this function, see [sklearn.linear_model.PassiveAggressiveClassifier.predict]
@@ -597,11 +588,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
597
588
  subproject=_SUBPROJECT,
598
589
  custom_tags=dict([("autogen", True)]),
599
590
  )
600
- @telemetry.add_stmt_params_to_df(
601
- project=_PROJECT,
602
- subproject=_SUBPROJECT,
603
- custom_tags=dict([("autogen", True)]),
604
- )
605
591
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
606
592
  """Method not supported for this class.
607
593
 
@@ -658,7 +644,8 @@ class PassiveAggressiveClassifier(BaseTransformer):
658
644
  if False:
659
645
  self.fit(dataset)
660
646
  assert self._sklearn_object is not None
661
- return self._sklearn_object.labels_
647
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
648
+ return labels
662
649
  else:
663
650
  raise NotImplementedError
664
651
 
@@ -694,6 +681,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
694
681
  output_cols = []
695
682
 
696
683
  # Make sure column names are valid snowflake identifiers.
684
+ assert output_cols is not None # Make MyPy happy
697
685
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
698
686
 
699
687
  return rv
@@ -704,11 +692,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
704
692
  subproject=_SUBPROJECT,
705
693
  custom_tags=dict([("autogen", True)]),
706
694
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
695
  def predict_proba(
713
696
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
714
697
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -749,11 +732,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
749
732
  subproject=_SUBPROJECT,
750
733
  custom_tags=dict([("autogen", True)]),
751
734
  )
752
- @telemetry.add_stmt_params_to_df(
753
- project=_PROJECT,
754
- subproject=_SUBPROJECT,
755
- custom_tags=dict([("autogen", True)]),
756
- )
757
735
  def predict_log_proba(
758
736
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
759
737
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -790,16 +768,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
790
768
  return output_df
791
769
 
792
770
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
793
- @telemetry.send_api_usage_telemetry(
794
- project=_PROJECT,
795
- subproject=_SUBPROJECT,
796
- custom_tags=dict([("autogen", True)]),
797
- )
798
- @telemetry.add_stmt_params_to_df(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
771
  def decision_function(
804
772
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
805
773
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -902,11 +870,6 @@ class PassiveAggressiveClassifier(BaseTransformer):
902
870
  subproject=_SUBPROJECT,
903
871
  custom_tags=dict([("autogen", True)]),
904
872
  )
905
- @telemetry.add_stmt_params_to_df(
906
- project=_PROJECT,
907
- subproject=_SUBPROJECT,
908
- custom_tags=dict([("autogen", True)]),
909
- )
910
873
  def kneighbors(
911
874
  self,
912
875
  dataset: Union[DataFrame, pd.DataFrame],
@@ -966,18 +929,28 @@ class PassiveAggressiveClassifier(BaseTransformer):
966
929
  # For classifier, the type of predict is the same as the type of label
967
930
  if self._sklearn_object._estimator_type == 'classifier':
968
931
  # label columns is the desired type for output
969
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
932
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
970
933
  # rename the output columns
971
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
934
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
972
935
  self._model_signature_dict["predict"] = ModelSignature(inputs,
973
936
  ([] if self._drop_input_cols else inputs)
974
937
  + outputs)
938
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
939
+ # For outlier models, returns -1 for outliers and 1 for inliers.
940
+ # Clusterer returns int64 cluster labels.
941
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
942
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
943
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
944
+ ([] if self._drop_input_cols else inputs)
945
+ + outputs)
946
+
975
947
  # For regressor, the type of predict is float64
976
948
  elif self._sklearn_object._estimator_type == 'regressor':
977
949
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
978
950
  self._model_signature_dict["predict"] = ModelSignature(inputs,
979
951
  ([] if self._drop_input_cols else inputs)
980
952
  + outputs)
953
+
981
954
  for prob_func in PROB_FUNCTIONS:
982
955
  if hasattr(self, prob_func):
983
956
  output_cols_prefix: str = f"{prob_func}_"