snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MeanShift(BaseTransformer):
57
58
  r"""Mean shift clustering using a flat kernel
58
59
  For more details on this class, see [sklearn.cluster.MeanShift]
@@ -60,6 +61,49 @@ class MeanShift(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  bandwidth: float, default=None
64
108
  Bandwidth used in the flat kernel.
65
109
 
@@ -109,35 +153,6 @@ class MeanShift(BaseTransformer):
109
153
  max_iter: int, default=300
110
154
  Maximum number of iterations, per seed point before the clustering
111
155
  operation terminates (for that seed point), if has not converged yet.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols and sample_weight_col parameters are
117
- considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- drop_input_cols: Optional[bool], default=False
140
- If set, the response of predict(), transform() methods will not contain input columns.
141
156
  """
142
157
 
143
158
  def __init__( # type: ignore[no-untyped-def]
@@ -153,6 +168,7 @@ class MeanShift(BaseTransformer):
153
168
  input_cols: Optional[Union[str, Iterable[str]]] = None,
154
169
  output_cols: Optional[Union[str, Iterable[str]]] = None,
155
170
  label_cols: Optional[Union[str, Iterable[str]]] = None,
171
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
156
172
  drop_input_cols: Optional[bool] = False,
157
173
  sample_weight_col: Optional[str] = None,
158
174
  ) -> None:
@@ -161,9 +177,10 @@ class MeanShift(BaseTransformer):
161
177
  self.set_input_cols(input_cols)
162
178
  self.set_output_cols(output_cols)
163
179
  self.set_label_cols(label_cols)
180
+ self.set_passthrough_cols(passthrough_cols)
164
181
  self.set_drop_input_cols(drop_input_cols)
165
182
  self.set_sample_weight_col(sample_weight_col)
166
- deps = set(SklearnWrapperProvider().dependencies)
183
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
167
184
 
168
185
  self._deps = list(deps)
169
186
 
@@ -178,13 +195,14 @@ class MeanShift(BaseTransformer):
178
195
  args=init_args,
179
196
  klass=sklearn.cluster.MeanShift
180
197
  )
181
- self._sklearn_object = sklearn.cluster.MeanShift(
198
+ self._sklearn_object: Any = sklearn.cluster.MeanShift(
182
199
  **cleaned_up_init_args,
183
200
  )
184
201
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
202
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
203
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
204
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
205
+ self._autogenerated = True
188
206
 
189
207
  def _get_rand_id(self) -> str:
190
208
  """
@@ -195,24 +213,6 @@ class MeanShift(BaseTransformer):
195
213
  """
196
214
  return str(uuid4()).replace("-", "_").upper()
197
215
 
198
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
199
- """
200
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
201
-
202
- Args:
203
- dataset: Input dataset.
204
- """
205
- if not self.input_cols:
206
- cols = [
207
- c for c in dataset.columns
208
- if c not in self.get_label_cols() and c != self.sample_weight_col
209
- ]
210
- self.set_input_cols(input_cols=cols)
211
-
212
- if not self.output_cols:
213
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
214
- self.set_output_cols(output_cols=cols)
215
-
216
216
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MeanShift":
217
217
  """
218
218
  Input columns setter.
@@ -258,54 +258,48 @@ class MeanShift(BaseTransformer):
258
258
  self
259
259
  """
260
260
  self._infer_input_output_cols(dataset)
261
- if isinstance(dataset, pd.DataFrame):
262
- assert self._sklearn_object is not None # keep mypy happy
263
- self._sklearn_object = self._handlers.fit_pandas(
264
- dataset,
265
- self._sklearn_object,
266
- self.input_cols,
267
- self.label_cols,
268
- self.sample_weight_col
269
- )
270
- elif isinstance(dataset, DataFrame):
271
- self._fit_snowpark(dataset)
272
- else:
273
- raise TypeError(
274
- f"Unexpected dataset type: {type(dataset)}."
275
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
276
- )
261
+ if isinstance(dataset, DataFrame):
262
+ session = dataset._session
263
+ assert session is not None # keep mypy happy
264
+ # Validate that key package version in user workspace are supported in snowflake conda channel
265
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
266
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
267
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
268
+
269
+ # Specify input columns so column pruning will be enforced
270
+ selected_cols = self._get_active_columns()
271
+ if len(selected_cols) > 0:
272
+ dataset = dataset.select(selected_cols)
273
+
274
+ self._snowpark_cols = dataset.select(self.input_cols).columns
275
+
276
+ # If we are already in a stored procedure, no need to kick off another one.
277
+ if SNOWML_SPROC_ENV in os.environ:
278
+ statement_params = telemetry.get_function_usage_statement_params(
279
+ project=_PROJECT,
280
+ subproject=_SUBPROJECT,
281
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MeanShift.__class__.__name__),
282
+ api_calls=[Session.call],
283
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
284
+ )
285
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
286
+ pd_df.columns = dataset.columns
287
+ dataset = pd_df
288
+
289
+ model_trainer = ModelTrainerBuilder.build(
290
+ estimator=self._sklearn_object,
291
+ dataset=dataset,
292
+ input_cols=self.input_cols,
293
+ label_cols=self.label_cols,
294
+ sample_weight_col=self.sample_weight_col,
295
+ autogenerated=self._autogenerated,
296
+ subproject=_SUBPROJECT
297
+ )
298
+ self._sklearn_object = model_trainer.train()
277
299
  self._is_fitted = True
278
300
  self._get_model_signatures(dataset)
279
301
  return self
280
302
 
281
- def _fit_snowpark(self, dataset: DataFrame) -> None:
282
- session = dataset._session
283
- assert session is not None # keep mypy happy
284
- # Validate that key package version in user workspace are supported in snowflake conda channel
285
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
286
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
287
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
288
-
289
- # Specify input columns so column pruning will be enforced
290
- selected_cols = self._get_active_columns()
291
- if len(selected_cols) > 0:
292
- dataset = dataset.select(selected_cols)
293
-
294
- estimator = self._sklearn_object
295
- assert estimator is not None # Keep mypy happy
296
-
297
- self._snowpark_cols = dataset.select(self.input_cols).columns
298
-
299
- self._sklearn_object = self._handlers.fit_snowpark(
300
- dataset,
301
- session,
302
- estimator,
303
- ["snowflake-snowpark-python"] + self._get_dependencies(),
304
- self.input_cols,
305
- self.label_cols,
306
- self.sample_weight_col,
307
- )
308
-
309
303
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
310
304
  if self._drop_input_cols:
311
305
  return []
@@ -493,11 +487,6 @@ class MeanShift(BaseTransformer):
493
487
  subproject=_SUBPROJECT,
494
488
  custom_tags=dict([("autogen", True)]),
495
489
  )
496
- @telemetry.add_stmt_params_to_df(
497
- project=_PROJECT,
498
- subproject=_SUBPROJECT,
499
- custom_tags=dict([("autogen", True)]),
500
- )
501
490
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
502
491
  """Predict the closest cluster each sample in X belongs to
503
492
  For more details on this function, see [sklearn.cluster.MeanShift.predict]
@@ -551,11 +540,6 @@ class MeanShift(BaseTransformer):
551
540
  subproject=_SUBPROJECT,
552
541
  custom_tags=dict([("autogen", True)]),
553
542
  )
554
- @telemetry.add_stmt_params_to_df(
555
- project=_PROJECT,
556
- subproject=_SUBPROJECT,
557
- custom_tags=dict([("autogen", True)]),
558
- )
559
543
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
560
544
  """Method not supported for this class.
561
545
 
@@ -614,7 +598,8 @@ class MeanShift(BaseTransformer):
614
598
  if True:
615
599
  self.fit(dataset)
616
600
  assert self._sklearn_object is not None
617
- return self._sklearn_object.labels_
601
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
602
+ return labels
618
603
  else:
619
604
  raise NotImplementedError
620
605
 
@@ -650,6 +635,7 @@ class MeanShift(BaseTransformer):
650
635
  output_cols = []
651
636
 
652
637
  # Make sure column names are valid snowflake identifiers.
638
+ assert output_cols is not None # Make MyPy happy
653
639
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
654
640
 
655
641
  return rv
@@ -660,11 +646,6 @@ class MeanShift(BaseTransformer):
660
646
  subproject=_SUBPROJECT,
661
647
  custom_tags=dict([("autogen", True)]),
662
648
  )
663
- @telemetry.add_stmt_params_to_df(
664
- project=_PROJECT,
665
- subproject=_SUBPROJECT,
666
- custom_tags=dict([("autogen", True)]),
667
- )
668
649
  def predict_proba(
669
650
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
670
651
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -705,11 +686,6 @@ class MeanShift(BaseTransformer):
705
686
  subproject=_SUBPROJECT,
706
687
  custom_tags=dict([("autogen", True)]),
707
688
  )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
689
  def predict_log_proba(
714
690
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
715
691
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -746,16 +722,6 @@ class MeanShift(BaseTransformer):
746
722
  return output_df
747
723
 
748
724
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
749
- @telemetry.send_api_usage_telemetry(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
- @telemetry.add_stmt_params_to_df(
755
- project=_PROJECT,
756
- subproject=_SUBPROJECT,
757
- custom_tags=dict([("autogen", True)]),
758
- )
759
725
  def decision_function(
760
726
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
761
727
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -854,11 +820,6 @@ class MeanShift(BaseTransformer):
854
820
  subproject=_SUBPROJECT,
855
821
  custom_tags=dict([("autogen", True)]),
856
822
  )
857
- @telemetry.add_stmt_params_to_df(
858
- project=_PROJECT,
859
- subproject=_SUBPROJECT,
860
- custom_tags=dict([("autogen", True)]),
861
- )
862
823
  def kneighbors(
863
824
  self,
864
825
  dataset: Union[DataFrame, pd.DataFrame],
@@ -918,18 +879,28 @@ class MeanShift(BaseTransformer):
918
879
  # For classifier, the type of predict is the same as the type of label
919
880
  if self._sklearn_object._estimator_type == 'classifier':
920
881
  # label columns is the desired type for output
921
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
882
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
922
883
  # rename the output columns
923
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
884
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
885
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
886
+ ([] if self._drop_input_cols else inputs)
887
+ + outputs)
888
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
889
+ # For outlier models, returns -1 for outliers and 1 for inliers.
890
+ # Clusterer returns int64 cluster labels.
891
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
892
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
924
893
  self._model_signature_dict["predict"] = ModelSignature(inputs,
925
894
  ([] if self._drop_input_cols else inputs)
926
895
  + outputs)
896
+
927
897
  # For regressor, the type of predict is float64
928
898
  elif self._sklearn_object._estimator_type == 'regressor':
929
899
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
930
900
  self._model_signature_dict["predict"] = ModelSignature(inputs,
931
901
  ([] if self._drop_input_cols else inputs)
932
902
  + outputs)
903
+
933
904
  for prob_func in PROB_FUNCTIONS:
934
905
  if hasattr(self, prob_func):
935
906
  output_cols_prefix: str = f"{prob_func}_"