snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class EmpiricalCovariance(BaseTransformer):
|
57
58
|
r"""Maximum likelihood covariance estimator
|
58
59
|
For more details on this class, see [sklearn.covariance.EmpiricalCovariance]
|
@@ -60,43 +61,57 @@ class EmpiricalCovariance(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
store_precision: bool, default=True
|
64
|
-
Specifies if the estimated precision is stored.
|
65
|
-
|
66
|
-
assume_centered: bool, default=False
|
67
|
-
If True, data are not centered before computation.
|
68
|
-
Useful when working with data whose mean is almost, but not exactly
|
69
|
-
zero.
|
70
|
-
If False (default), data are centered before computation.
|
71
64
|
|
72
65
|
input_cols: Optional[Union[str, List[str]]]
|
73
66
|
A string or list of strings representing column names that contain features.
|
74
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
75
|
-
the columns specified by label_cols
|
76
|
-
considered input columns.
|
77
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
78
72
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
81
|
-
columns. If this parameter is not specified, then object is fitted without
|
82
|
-
labels (like a transformer).
|
83
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
84
75
|
output_cols: Optional[Union[str, List[str]]]
|
85
76
|
A string or list of strings representing column names that will store the
|
86
77
|
output of predict and transform operations. The length of output_cols must
|
87
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
88
79
|
transformer class used.
|
89
|
-
If this parameter
|
90
|
-
|
91
|
-
|
92
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
93
89
|
|
94
90
|
sample_weight_col: Optional[str]
|
95
91
|
A string representing the column name containing the sample weights.
|
96
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
97
103
|
|
98
104
|
drop_input_cols: Optional[bool], default=False
|
99
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
store_precision: bool, default=True
|
108
|
+
Specifies if the estimated precision is stored.
|
109
|
+
|
110
|
+
assume_centered: bool, default=False
|
111
|
+
If True, data are not centered before computation.
|
112
|
+
Useful when working with data whose mean is almost, but not exactly
|
113
|
+
zero.
|
114
|
+
If False (default), data are centered before computation.
|
100
115
|
"""
|
101
116
|
|
102
117
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -107,6 +122,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
107
122
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
108
123
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
109
124
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
125
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
110
126
|
drop_input_cols: Optional[bool] = False,
|
111
127
|
sample_weight_col: Optional[str] = None,
|
112
128
|
) -> None:
|
@@ -115,9 +131,10 @@ class EmpiricalCovariance(BaseTransformer):
|
|
115
131
|
self.set_input_cols(input_cols)
|
116
132
|
self.set_output_cols(output_cols)
|
117
133
|
self.set_label_cols(label_cols)
|
134
|
+
self.set_passthrough_cols(passthrough_cols)
|
118
135
|
self.set_drop_input_cols(drop_input_cols)
|
119
136
|
self.set_sample_weight_col(sample_weight_col)
|
120
|
-
deps = set(
|
137
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
121
138
|
|
122
139
|
self._deps = list(deps)
|
123
140
|
|
@@ -127,13 +144,14 @@ class EmpiricalCovariance(BaseTransformer):
|
|
127
144
|
args=init_args,
|
128
145
|
klass=sklearn.covariance.EmpiricalCovariance
|
129
146
|
)
|
130
|
-
self._sklearn_object = sklearn.covariance.EmpiricalCovariance(
|
147
|
+
self._sklearn_object: Any = sklearn.covariance.EmpiricalCovariance(
|
131
148
|
**cleaned_up_init_args,
|
132
149
|
)
|
133
150
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
134
151
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
135
152
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
136
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EmpiricalCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
153
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EmpiricalCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
154
|
+
self._autogenerated = True
|
137
155
|
|
138
156
|
def _get_rand_id(self) -> str:
|
139
157
|
"""
|
@@ -144,24 +162,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
144
162
|
"""
|
145
163
|
return str(uuid4()).replace("-", "_").upper()
|
146
164
|
|
147
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
148
|
-
"""
|
149
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
150
|
-
|
151
|
-
Args:
|
152
|
-
dataset: Input dataset.
|
153
|
-
"""
|
154
|
-
if not self.input_cols:
|
155
|
-
cols = [
|
156
|
-
c for c in dataset.columns
|
157
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
158
|
-
]
|
159
|
-
self.set_input_cols(input_cols=cols)
|
160
|
-
|
161
|
-
if not self.output_cols:
|
162
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
163
|
-
self.set_output_cols(output_cols=cols)
|
164
|
-
|
165
165
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "EmpiricalCovariance":
|
166
166
|
"""
|
167
167
|
Input columns setter.
|
@@ -207,54 +207,48 @@ class EmpiricalCovariance(BaseTransformer):
|
|
207
207
|
self
|
208
208
|
"""
|
209
209
|
self._infer_input_output_cols(dataset)
|
210
|
-
if isinstance(dataset,
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
self.
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
210
|
+
if isinstance(dataset, DataFrame):
|
211
|
+
session = dataset._session
|
212
|
+
assert session is not None # keep mypy happy
|
213
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
214
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
215
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
216
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
217
|
+
|
218
|
+
# Specify input columns so column pruning will be enforced
|
219
|
+
selected_cols = self._get_active_columns()
|
220
|
+
if len(selected_cols) > 0:
|
221
|
+
dataset = dataset.select(selected_cols)
|
222
|
+
|
223
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
224
|
+
|
225
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
226
|
+
if SNOWML_SPROC_ENV in os.environ:
|
227
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
228
|
+
project=_PROJECT,
|
229
|
+
subproject=_SUBPROJECT,
|
230
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EmpiricalCovariance.__class__.__name__),
|
231
|
+
api_calls=[Session.call],
|
232
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
233
|
+
)
|
234
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
235
|
+
pd_df.columns = dataset.columns
|
236
|
+
dataset = pd_df
|
237
|
+
|
238
|
+
model_trainer = ModelTrainerBuilder.build(
|
239
|
+
estimator=self._sklearn_object,
|
240
|
+
dataset=dataset,
|
241
|
+
input_cols=self.input_cols,
|
242
|
+
label_cols=self.label_cols,
|
243
|
+
sample_weight_col=self.sample_weight_col,
|
244
|
+
autogenerated=self._autogenerated,
|
245
|
+
subproject=_SUBPROJECT
|
246
|
+
)
|
247
|
+
self._sklearn_object = model_trainer.train()
|
226
248
|
self._is_fitted = True
|
227
249
|
self._get_model_signatures(dataset)
|
228
250
|
return self
|
229
251
|
|
230
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
231
|
-
session = dataset._session
|
232
|
-
assert session is not None # keep mypy happy
|
233
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
-
|
238
|
-
# Specify input columns so column pruning will be enforced
|
239
|
-
selected_cols = self._get_active_columns()
|
240
|
-
if len(selected_cols) > 0:
|
241
|
-
dataset = dataset.select(selected_cols)
|
242
|
-
|
243
|
-
estimator = self._sklearn_object
|
244
|
-
assert estimator is not None # Keep mypy happy
|
245
|
-
|
246
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
247
|
-
|
248
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
249
|
-
dataset,
|
250
|
-
session,
|
251
|
-
estimator,
|
252
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
253
|
-
self.input_cols,
|
254
|
-
self.label_cols,
|
255
|
-
self.sample_weight_col,
|
256
|
-
)
|
257
|
-
|
258
252
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
259
253
|
if self._drop_input_cols:
|
260
254
|
return []
|
@@ -442,11 +436,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
442
436
|
subproject=_SUBPROJECT,
|
443
437
|
custom_tags=dict([("autogen", True)]),
|
444
438
|
)
|
445
|
-
@telemetry.add_stmt_params_to_df(
|
446
|
-
project=_PROJECT,
|
447
|
-
subproject=_SUBPROJECT,
|
448
|
-
custom_tags=dict([("autogen", True)]),
|
449
|
-
)
|
450
439
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
451
440
|
"""Method not supported for this class.
|
452
441
|
|
@@ -498,11 +487,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
498
487
|
subproject=_SUBPROJECT,
|
499
488
|
custom_tags=dict([("autogen", True)]),
|
500
489
|
)
|
501
|
-
@telemetry.add_stmt_params_to_df(
|
502
|
-
project=_PROJECT,
|
503
|
-
subproject=_SUBPROJECT,
|
504
|
-
custom_tags=dict([("autogen", True)]),
|
505
|
-
)
|
506
490
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
507
491
|
"""Method not supported for this class.
|
508
492
|
|
@@ -559,7 +543,8 @@ class EmpiricalCovariance(BaseTransformer):
|
|
559
543
|
if False:
|
560
544
|
self.fit(dataset)
|
561
545
|
assert self._sklearn_object is not None
|
562
|
-
|
546
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
547
|
+
return labels
|
563
548
|
else:
|
564
549
|
raise NotImplementedError
|
565
550
|
|
@@ -595,6 +580,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
595
580
|
output_cols = []
|
596
581
|
|
597
582
|
# Make sure column names are valid snowflake identifiers.
|
583
|
+
assert output_cols is not None # Make MyPy happy
|
598
584
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
599
585
|
|
600
586
|
return rv
|
@@ -605,11 +591,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
605
591
|
subproject=_SUBPROJECT,
|
606
592
|
custom_tags=dict([("autogen", True)]),
|
607
593
|
)
|
608
|
-
@telemetry.add_stmt_params_to_df(
|
609
|
-
project=_PROJECT,
|
610
|
-
subproject=_SUBPROJECT,
|
611
|
-
custom_tags=dict([("autogen", True)]),
|
612
|
-
)
|
613
594
|
def predict_proba(
|
614
595
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
615
596
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -650,11 +631,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
650
631
|
subproject=_SUBPROJECT,
|
651
632
|
custom_tags=dict([("autogen", True)]),
|
652
633
|
)
|
653
|
-
@telemetry.add_stmt_params_to_df(
|
654
|
-
project=_PROJECT,
|
655
|
-
subproject=_SUBPROJECT,
|
656
|
-
custom_tags=dict([("autogen", True)]),
|
657
|
-
)
|
658
634
|
def predict_log_proba(
|
659
635
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
660
636
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -691,16 +667,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
691
667
|
return output_df
|
692
668
|
|
693
669
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
694
|
-
@telemetry.send_api_usage_telemetry(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
670
|
def decision_function(
|
705
671
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
706
672
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -801,11 +767,6 @@ class EmpiricalCovariance(BaseTransformer):
|
|
801
767
|
subproject=_SUBPROJECT,
|
802
768
|
custom_tags=dict([("autogen", True)]),
|
803
769
|
)
|
804
|
-
@telemetry.add_stmt_params_to_df(
|
805
|
-
project=_PROJECT,
|
806
|
-
subproject=_SUBPROJECT,
|
807
|
-
custom_tags=dict([("autogen", True)]),
|
808
|
-
)
|
809
770
|
def kneighbors(
|
810
771
|
self,
|
811
772
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -865,18 +826,28 @@ class EmpiricalCovariance(BaseTransformer):
|
|
865
826
|
# For classifier, the type of predict is the same as the type of label
|
866
827
|
if self._sklearn_object._estimator_type == 'classifier':
|
867
828
|
# label columns is the desired type for output
|
868
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
829
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
869
830
|
# rename the output columns
|
870
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
831
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
871
832
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
872
833
|
([] if self._drop_input_cols else inputs)
|
873
834
|
+ outputs)
|
835
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
836
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
837
|
+
# Clusterer returns int64 cluster labels.
|
838
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
839
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
840
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
841
|
+
([] if self._drop_input_cols else inputs)
|
842
|
+
+ outputs)
|
843
|
+
|
874
844
|
# For regressor, the type of predict is float64
|
875
845
|
elif self._sklearn_object._estimator_type == 'regressor':
|
876
846
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
877
847
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
878
848
|
([] if self._drop_input_cols else inputs)
|
879
849
|
+ outputs)
|
850
|
+
|
880
851
|
for prob_func in PROB_FUNCTIONS:
|
881
852
|
if hasattr(self, prob_func):
|
882
853
|
output_cols_prefix: str = f"{prob_func}_"
|