snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreesClassifier(BaseTransformer):
|
57
58
|
r"""An extra-trees classifier
|
58
59
|
For more details on this class, see [sklearn.ensemble.ExtraTreesClassifier]
|
@@ -60,6 +61,51 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -211,35 +257,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
211
257
|
- If int, then draw `max_samples` samples.
|
212
258
|
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
|
213
259
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
214
|
-
|
215
|
-
input_cols: Optional[Union[str, List[str]]]
|
216
|
-
A string or list of strings representing column names that contain features.
|
217
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
218
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
219
|
-
considered input columns.
|
220
|
-
|
221
|
-
label_cols: Optional[Union[str, List[str]]]
|
222
|
-
A string or list of strings representing column names that contain labels.
|
223
|
-
This is a required param for estimators, as there is no way to infer these
|
224
|
-
columns. If this parameter is not specified, then object is fitted without
|
225
|
-
labels (like a transformer).
|
226
|
-
|
227
|
-
output_cols: Optional[Union[str, List[str]]]
|
228
|
-
A string or list of strings representing column names that will store the
|
229
|
-
output of predict and transform operations. The length of output_cols must
|
230
|
-
match the expected number of output columns from the specific estimator or
|
231
|
-
transformer class used.
|
232
|
-
If this parameter is not specified, output column names are derived by
|
233
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
234
|
-
column names work for estimator's predict() method, but output_cols must
|
235
|
-
be set explicitly for transformers.
|
236
|
-
|
237
|
-
sample_weight_col: Optional[str]
|
238
|
-
A string representing the column name containing the sample weights.
|
239
|
-
This argument is only required when working with weighted datasets.
|
240
|
-
|
241
|
-
drop_input_cols: Optional[bool], default=False
|
242
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
243
260
|
"""
|
244
261
|
|
245
262
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -266,6 +283,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
266
283
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
267
284
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
268
285
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
286
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
269
287
|
drop_input_cols: Optional[bool] = False,
|
270
288
|
sample_weight_col: Optional[str] = None,
|
271
289
|
) -> None:
|
@@ -274,9 +292,10 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
274
292
|
self.set_input_cols(input_cols)
|
275
293
|
self.set_output_cols(output_cols)
|
276
294
|
self.set_label_cols(label_cols)
|
295
|
+
self.set_passthrough_cols(passthrough_cols)
|
277
296
|
self.set_drop_input_cols(drop_input_cols)
|
278
297
|
self.set_sample_weight_col(sample_weight_col)
|
279
|
-
deps = set(
|
298
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
280
299
|
|
281
300
|
self._deps = list(deps)
|
282
301
|
|
@@ -302,13 +321,14 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
302
321
|
args=init_args,
|
303
322
|
klass=sklearn.ensemble.ExtraTreesClassifier
|
304
323
|
)
|
305
|
-
self._sklearn_object = sklearn.ensemble.ExtraTreesClassifier(
|
324
|
+
self._sklearn_object: Any = sklearn.ensemble.ExtraTreesClassifier(
|
306
325
|
**cleaned_up_init_args,
|
307
326
|
)
|
308
327
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
309
328
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
310
329
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
311
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
330
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
331
|
+
self._autogenerated = True
|
312
332
|
|
313
333
|
def _get_rand_id(self) -> str:
|
314
334
|
"""
|
@@ -319,24 +339,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
319
339
|
"""
|
320
340
|
return str(uuid4()).replace("-", "_").upper()
|
321
341
|
|
322
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
323
|
-
"""
|
324
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
325
|
-
|
326
|
-
Args:
|
327
|
-
dataset: Input dataset.
|
328
|
-
"""
|
329
|
-
if not self.input_cols:
|
330
|
-
cols = [
|
331
|
-
c for c in dataset.columns
|
332
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
333
|
-
]
|
334
|
-
self.set_input_cols(input_cols=cols)
|
335
|
-
|
336
|
-
if not self.output_cols:
|
337
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
338
|
-
self.set_output_cols(output_cols=cols)
|
339
|
-
|
340
342
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreesClassifier":
|
341
343
|
"""
|
342
344
|
Input columns setter.
|
@@ -382,54 +384,48 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
382
384
|
self
|
383
385
|
"""
|
384
386
|
self._infer_input_output_cols(dataset)
|
385
|
-
if isinstance(dataset,
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
self.
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
387
|
+
if isinstance(dataset, DataFrame):
|
388
|
+
session = dataset._session
|
389
|
+
assert session is not None # keep mypy happy
|
390
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
391
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
392
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
393
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
394
|
+
|
395
|
+
# Specify input columns so column pruning will be enforced
|
396
|
+
selected_cols = self._get_active_columns()
|
397
|
+
if len(selected_cols) > 0:
|
398
|
+
dataset = dataset.select(selected_cols)
|
399
|
+
|
400
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
401
|
+
|
402
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
403
|
+
if SNOWML_SPROC_ENV in os.environ:
|
404
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
405
|
+
project=_PROJECT,
|
406
|
+
subproject=_SUBPROJECT,
|
407
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesClassifier.__class__.__name__),
|
408
|
+
api_calls=[Session.call],
|
409
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
410
|
+
)
|
411
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
412
|
+
pd_df.columns = dataset.columns
|
413
|
+
dataset = pd_df
|
414
|
+
|
415
|
+
model_trainer = ModelTrainerBuilder.build(
|
416
|
+
estimator=self._sklearn_object,
|
417
|
+
dataset=dataset,
|
418
|
+
input_cols=self.input_cols,
|
419
|
+
label_cols=self.label_cols,
|
420
|
+
sample_weight_col=self.sample_weight_col,
|
421
|
+
autogenerated=self._autogenerated,
|
422
|
+
subproject=_SUBPROJECT
|
423
|
+
)
|
424
|
+
self._sklearn_object = model_trainer.train()
|
401
425
|
self._is_fitted = True
|
402
426
|
self._get_model_signatures(dataset)
|
403
427
|
return self
|
404
428
|
|
405
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
406
|
-
session = dataset._session
|
407
|
-
assert session is not None # keep mypy happy
|
408
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
409
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
410
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
411
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
412
|
-
|
413
|
-
# Specify input columns so column pruning will be enforced
|
414
|
-
selected_cols = self._get_active_columns()
|
415
|
-
if len(selected_cols) > 0:
|
416
|
-
dataset = dataset.select(selected_cols)
|
417
|
-
|
418
|
-
estimator = self._sklearn_object
|
419
|
-
assert estimator is not None # Keep mypy happy
|
420
|
-
|
421
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
422
|
-
|
423
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
424
|
-
dataset,
|
425
|
-
session,
|
426
|
-
estimator,
|
427
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
428
|
-
self.input_cols,
|
429
|
-
self.label_cols,
|
430
|
-
self.sample_weight_col,
|
431
|
-
)
|
432
|
-
|
433
429
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
434
430
|
if self._drop_input_cols:
|
435
431
|
return []
|
@@ -617,11 +613,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
617
613
|
subproject=_SUBPROJECT,
|
618
614
|
custom_tags=dict([("autogen", True)]),
|
619
615
|
)
|
620
|
-
@telemetry.add_stmt_params_to_df(
|
621
|
-
project=_PROJECT,
|
622
|
-
subproject=_SUBPROJECT,
|
623
|
-
custom_tags=dict([("autogen", True)]),
|
624
|
-
)
|
625
616
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
626
617
|
"""Predict class for X
|
627
618
|
For more details on this function, see [sklearn.ensemble.ExtraTreesClassifier.predict]
|
@@ -675,11 +666,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
675
666
|
subproject=_SUBPROJECT,
|
676
667
|
custom_tags=dict([("autogen", True)]),
|
677
668
|
)
|
678
|
-
@telemetry.add_stmt_params_to_df(
|
679
|
-
project=_PROJECT,
|
680
|
-
subproject=_SUBPROJECT,
|
681
|
-
custom_tags=dict([("autogen", True)]),
|
682
|
-
)
|
683
669
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
684
670
|
"""Method not supported for this class.
|
685
671
|
|
@@ -736,7 +722,8 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
736
722
|
if False:
|
737
723
|
self.fit(dataset)
|
738
724
|
assert self._sklearn_object is not None
|
739
|
-
|
725
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
726
|
+
return labels
|
740
727
|
else:
|
741
728
|
raise NotImplementedError
|
742
729
|
|
@@ -772,6 +759,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
772
759
|
output_cols = []
|
773
760
|
|
774
761
|
# Make sure column names are valid snowflake identifiers.
|
762
|
+
assert output_cols is not None # Make MyPy happy
|
775
763
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
776
764
|
|
777
765
|
return rv
|
@@ -782,11 +770,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
782
770
|
subproject=_SUBPROJECT,
|
783
771
|
custom_tags=dict([("autogen", True)]),
|
784
772
|
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
773
|
def predict_proba(
|
791
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
792
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -829,11 +812,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
829
812
|
subproject=_SUBPROJECT,
|
830
813
|
custom_tags=dict([("autogen", True)]),
|
831
814
|
)
|
832
|
-
@telemetry.add_stmt_params_to_df(
|
833
|
-
project=_PROJECT,
|
834
|
-
subproject=_SUBPROJECT,
|
835
|
-
custom_tags=dict([("autogen", True)]),
|
836
|
-
)
|
837
815
|
def predict_log_proba(
|
838
816
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
839
817
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -872,16 +850,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
872
850
|
return output_df
|
873
851
|
|
874
852
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
875
|
-
@telemetry.send_api_usage_telemetry(
|
876
|
-
project=_PROJECT,
|
877
|
-
subproject=_SUBPROJECT,
|
878
|
-
custom_tags=dict([("autogen", True)]),
|
879
|
-
)
|
880
|
-
@telemetry.add_stmt_params_to_df(
|
881
|
-
project=_PROJECT,
|
882
|
-
subproject=_SUBPROJECT,
|
883
|
-
custom_tags=dict([("autogen", True)]),
|
884
|
-
)
|
885
853
|
def decision_function(
|
886
854
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
887
855
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -982,11 +950,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
982
950
|
subproject=_SUBPROJECT,
|
983
951
|
custom_tags=dict([("autogen", True)]),
|
984
952
|
)
|
985
|
-
@telemetry.add_stmt_params_to_df(
|
986
|
-
project=_PROJECT,
|
987
|
-
subproject=_SUBPROJECT,
|
988
|
-
custom_tags=dict([("autogen", True)]),
|
989
|
-
)
|
990
953
|
def kneighbors(
|
991
954
|
self,
|
992
955
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1046,18 +1009,28 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
1046
1009
|
# For classifier, the type of predict is the same as the type of label
|
1047
1010
|
if self._sklearn_object._estimator_type == 'classifier':
|
1048
1011
|
# label columns is the desired type for output
|
1049
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1012
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1050
1013
|
# rename the output columns
|
1051
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1014
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1052
1015
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1053
1016
|
([] if self._drop_input_cols else inputs)
|
1054
1017
|
+ outputs)
|
1018
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1019
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1020
|
+
# Clusterer returns int64 cluster labels.
|
1021
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1022
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1023
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1024
|
+
([] if self._drop_input_cols else inputs)
|
1025
|
+
+ outputs)
|
1026
|
+
|
1055
1027
|
# For regressor, the type of predict is float64
|
1056
1028
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1057
1029
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1058
1030
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1059
1031
|
([] if self._drop_input_cols else inputs)
|
1060
1032
|
+ outputs)
|
1033
|
+
|
1061
1034
|
for prob_func in PROB_FUNCTIONS:
|
1062
1035
|
if hasattr(self, prob_func):
|
1063
1036
|
output_cols_prefix: str = f"{prob_func}_"
|