snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ExtraTreesClassifier(BaseTransformer):
57
58
  r"""An extra-trees classifier
58
59
  For more details on this class, see [sklearn.ensemble.ExtraTreesClassifier]
@@ -60,6 +61,51 @@ class ExtraTreesClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -211,35 +257,6 @@ class ExtraTreesClassifier(BaseTransformer):
211
257
  - If int, then draw `max_samples` samples.
212
258
  - If float, then draw `max_samples * X.shape[0]` samples. Thus,
213
259
  `max_samples` should be in the interval `(0.0, 1.0]`.
214
-
215
- input_cols: Optional[Union[str, List[str]]]
216
- A string or list of strings representing column names that contain features.
217
- If this parameter is not specified, all columns in the input DataFrame except
218
- the columns specified by label_cols and sample_weight_col parameters are
219
- considered input columns.
220
-
221
- label_cols: Optional[Union[str, List[str]]]
222
- A string or list of strings representing column names that contain labels.
223
- This is a required param for estimators, as there is no way to infer these
224
- columns. If this parameter is not specified, then object is fitted without
225
- labels (like a transformer).
226
-
227
- output_cols: Optional[Union[str, List[str]]]
228
- A string or list of strings representing column names that will store the
229
- output of predict and transform operations. The length of output_cols must
230
- match the expected number of output columns from the specific estimator or
231
- transformer class used.
232
- If this parameter is not specified, output column names are derived by
233
- adding an OUTPUT_ prefix to the label column names. These inferred output
234
- column names work for estimator's predict() method, but output_cols must
235
- be set explicitly for transformers.
236
-
237
- sample_weight_col: Optional[str]
238
- A string representing the column name containing the sample weights.
239
- This argument is only required when working with weighted datasets.
240
-
241
- drop_input_cols: Optional[bool], default=False
242
- If set, the response of predict(), transform() methods will not contain input columns.
243
260
  """
244
261
 
245
262
  def __init__( # type: ignore[no-untyped-def]
@@ -266,6 +283,7 @@ class ExtraTreesClassifier(BaseTransformer):
266
283
  input_cols: Optional[Union[str, Iterable[str]]] = None,
267
284
  output_cols: Optional[Union[str, Iterable[str]]] = None,
268
285
  label_cols: Optional[Union[str, Iterable[str]]] = None,
286
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
269
287
  drop_input_cols: Optional[bool] = False,
270
288
  sample_weight_col: Optional[str] = None,
271
289
  ) -> None:
@@ -274,9 +292,10 @@ class ExtraTreesClassifier(BaseTransformer):
274
292
  self.set_input_cols(input_cols)
275
293
  self.set_output_cols(output_cols)
276
294
  self.set_label_cols(label_cols)
295
+ self.set_passthrough_cols(passthrough_cols)
277
296
  self.set_drop_input_cols(drop_input_cols)
278
297
  self.set_sample_weight_col(sample_weight_col)
279
- deps = set(SklearnWrapperProvider().dependencies)
298
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
280
299
 
281
300
  self._deps = list(deps)
282
301
 
@@ -302,13 +321,14 @@ class ExtraTreesClassifier(BaseTransformer):
302
321
  args=init_args,
303
322
  klass=sklearn.ensemble.ExtraTreesClassifier
304
323
  )
305
- self._sklearn_object = sklearn.ensemble.ExtraTreesClassifier(
324
+ self._sklearn_object: Any = sklearn.ensemble.ExtraTreesClassifier(
306
325
  **cleaned_up_init_args,
307
326
  )
308
327
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
309
328
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
310
329
  self._snowpark_cols: Optional[List[str]] = self.input_cols
311
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
330
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
331
+ self._autogenerated = True
312
332
 
313
333
  def _get_rand_id(self) -> str:
314
334
  """
@@ -319,24 +339,6 @@ class ExtraTreesClassifier(BaseTransformer):
319
339
  """
320
340
  return str(uuid4()).replace("-", "_").upper()
321
341
 
322
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
323
- """
324
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
325
-
326
- Args:
327
- dataset: Input dataset.
328
- """
329
- if not self.input_cols:
330
- cols = [
331
- c for c in dataset.columns
332
- if c not in self.get_label_cols() and c != self.sample_weight_col
333
- ]
334
- self.set_input_cols(input_cols=cols)
335
-
336
- if not self.output_cols:
337
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
338
- self.set_output_cols(output_cols=cols)
339
-
340
342
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreesClassifier":
341
343
  """
342
344
  Input columns setter.
@@ -382,54 +384,48 @@ class ExtraTreesClassifier(BaseTransformer):
382
384
  self
383
385
  """
384
386
  self._infer_input_output_cols(dataset)
385
- if isinstance(dataset, pd.DataFrame):
386
- assert self._sklearn_object is not None # keep mypy happy
387
- self._sklearn_object = self._handlers.fit_pandas(
388
- dataset,
389
- self._sklearn_object,
390
- self.input_cols,
391
- self.label_cols,
392
- self.sample_weight_col
393
- )
394
- elif isinstance(dataset, DataFrame):
395
- self._fit_snowpark(dataset)
396
- else:
397
- raise TypeError(
398
- f"Unexpected dataset type: {type(dataset)}."
399
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
400
- )
387
+ if isinstance(dataset, DataFrame):
388
+ session = dataset._session
389
+ assert session is not None # keep mypy happy
390
+ # Validate that key package version in user workspace are supported in snowflake conda channel
391
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
392
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
393
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
394
+
395
+ # Specify input columns so column pruning will be enforced
396
+ selected_cols = self._get_active_columns()
397
+ if len(selected_cols) > 0:
398
+ dataset = dataset.select(selected_cols)
399
+
400
+ self._snowpark_cols = dataset.select(self.input_cols).columns
401
+
402
+ # If we are already in a stored procedure, no need to kick off another one.
403
+ if SNOWML_SPROC_ENV in os.environ:
404
+ statement_params = telemetry.get_function_usage_statement_params(
405
+ project=_PROJECT,
406
+ subproject=_SUBPROJECT,
407
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesClassifier.__class__.__name__),
408
+ api_calls=[Session.call],
409
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
410
+ )
411
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
412
+ pd_df.columns = dataset.columns
413
+ dataset = pd_df
414
+
415
+ model_trainer = ModelTrainerBuilder.build(
416
+ estimator=self._sklearn_object,
417
+ dataset=dataset,
418
+ input_cols=self.input_cols,
419
+ label_cols=self.label_cols,
420
+ sample_weight_col=self.sample_weight_col,
421
+ autogenerated=self._autogenerated,
422
+ subproject=_SUBPROJECT
423
+ )
424
+ self._sklearn_object = model_trainer.train()
401
425
  self._is_fitted = True
402
426
  self._get_model_signatures(dataset)
403
427
  return self
404
428
 
405
- def _fit_snowpark(self, dataset: DataFrame) -> None:
406
- session = dataset._session
407
- assert session is not None # keep mypy happy
408
- # Validate that key package version in user workspace are supported in snowflake conda channel
409
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
410
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
411
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
412
-
413
- # Specify input columns so column pruning will be enforced
414
- selected_cols = self._get_active_columns()
415
- if len(selected_cols) > 0:
416
- dataset = dataset.select(selected_cols)
417
-
418
- estimator = self._sklearn_object
419
- assert estimator is not None # Keep mypy happy
420
-
421
- self._snowpark_cols = dataset.select(self.input_cols).columns
422
-
423
- self._sklearn_object = self._handlers.fit_snowpark(
424
- dataset,
425
- session,
426
- estimator,
427
- ["snowflake-snowpark-python"] + self._get_dependencies(),
428
- self.input_cols,
429
- self.label_cols,
430
- self.sample_weight_col,
431
- )
432
-
433
429
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
434
430
  if self._drop_input_cols:
435
431
  return []
@@ -617,11 +613,6 @@ class ExtraTreesClassifier(BaseTransformer):
617
613
  subproject=_SUBPROJECT,
618
614
  custom_tags=dict([("autogen", True)]),
619
615
  )
620
- @telemetry.add_stmt_params_to_df(
621
- project=_PROJECT,
622
- subproject=_SUBPROJECT,
623
- custom_tags=dict([("autogen", True)]),
624
- )
625
616
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
626
617
  """Predict class for X
627
618
  For more details on this function, see [sklearn.ensemble.ExtraTreesClassifier.predict]
@@ -675,11 +666,6 @@ class ExtraTreesClassifier(BaseTransformer):
675
666
  subproject=_SUBPROJECT,
676
667
  custom_tags=dict([("autogen", True)]),
677
668
  )
678
- @telemetry.add_stmt_params_to_df(
679
- project=_PROJECT,
680
- subproject=_SUBPROJECT,
681
- custom_tags=dict([("autogen", True)]),
682
- )
683
669
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
684
670
  """Method not supported for this class.
685
671
 
@@ -736,7 +722,8 @@ class ExtraTreesClassifier(BaseTransformer):
736
722
  if False:
737
723
  self.fit(dataset)
738
724
  assert self._sklearn_object is not None
739
- return self._sklearn_object.labels_
725
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
726
+ return labels
740
727
  else:
741
728
  raise NotImplementedError
742
729
 
@@ -772,6 +759,7 @@ class ExtraTreesClassifier(BaseTransformer):
772
759
  output_cols = []
773
760
 
774
761
  # Make sure column names are valid snowflake identifiers.
762
+ assert output_cols is not None # Make MyPy happy
775
763
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
776
764
 
777
765
  return rv
@@ -782,11 +770,6 @@ class ExtraTreesClassifier(BaseTransformer):
782
770
  subproject=_SUBPROJECT,
783
771
  custom_tags=dict([("autogen", True)]),
784
772
  )
785
- @telemetry.add_stmt_params_to_df(
786
- project=_PROJECT,
787
- subproject=_SUBPROJECT,
788
- custom_tags=dict([("autogen", True)]),
789
- )
790
773
  def predict_proba(
791
774
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
792
775
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -829,11 +812,6 @@ class ExtraTreesClassifier(BaseTransformer):
829
812
  subproject=_SUBPROJECT,
830
813
  custom_tags=dict([("autogen", True)]),
831
814
  )
832
- @telemetry.add_stmt_params_to_df(
833
- project=_PROJECT,
834
- subproject=_SUBPROJECT,
835
- custom_tags=dict([("autogen", True)]),
836
- )
837
815
  def predict_log_proba(
838
816
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
839
817
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -872,16 +850,6 @@ class ExtraTreesClassifier(BaseTransformer):
872
850
  return output_df
873
851
 
874
852
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
875
- @telemetry.send_api_usage_telemetry(
876
- project=_PROJECT,
877
- subproject=_SUBPROJECT,
878
- custom_tags=dict([("autogen", True)]),
879
- )
880
- @telemetry.add_stmt_params_to_df(
881
- project=_PROJECT,
882
- subproject=_SUBPROJECT,
883
- custom_tags=dict([("autogen", True)]),
884
- )
885
853
  def decision_function(
886
854
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
887
855
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -982,11 +950,6 @@ class ExtraTreesClassifier(BaseTransformer):
982
950
  subproject=_SUBPROJECT,
983
951
  custom_tags=dict([("autogen", True)]),
984
952
  )
985
- @telemetry.add_stmt_params_to_df(
986
- project=_PROJECT,
987
- subproject=_SUBPROJECT,
988
- custom_tags=dict([("autogen", True)]),
989
- )
990
953
  def kneighbors(
991
954
  self,
992
955
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1046,18 +1009,28 @@ class ExtraTreesClassifier(BaseTransformer):
1046
1009
  # For classifier, the type of predict is the same as the type of label
1047
1010
  if self._sklearn_object._estimator_type == 'classifier':
1048
1011
  # label columns is the desired type for output
1049
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1012
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1050
1013
  # rename the output columns
1051
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1014
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1052
1015
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1053
1016
  ([] if self._drop_input_cols else inputs)
1054
1017
  + outputs)
1018
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1019
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1020
+ # Clusterer returns int64 cluster labels.
1021
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1022
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1023
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
+ ([] if self._drop_input_cols else inputs)
1025
+ + outputs)
1026
+
1055
1027
  # For regressor, the type of predict is float64
1056
1028
  elif self._sklearn_object._estimator_type == 'regressor':
1057
1029
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1058
1030
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1059
1031
  ([] if self._drop_input_cols else inputs)
1060
1032
  + outputs)
1033
+
1061
1034
  for prob_func in PROB_FUNCTIONS:
1062
1035
  if hasattr(self, prob_func):
1063
1036
  output_cols_prefix: str = f"{prob_func}_"