snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -2,13 +2,13 @@
2
2
  # This code is auto-generated using the sklearn_wrapper_template.py_template template.
3
3
  # Do not modify the auto-generated code(except automatic reformatting by precommit hooks).
4
4
  #
5
- from typing import Dict, Iterable, List, Optional, Set, Union
5
+ from typing import Any, Dict, Iterable, List, Optional, Set, Union
6
6
  from uuid import uuid4
7
7
 
8
+ import cloudpickle as cp
8
9
  import numpy as np
9
10
  import pandas as pd
10
11
  import sklearn.model_selection
11
- from sklearn.model_selection import ParameterGrid
12
12
  from sklearn.utils.metaestimators import available_if
13
13
 
14
14
  from snowflake.ml._internal import telemetry
@@ -25,13 +25,12 @@ from snowflake.ml.model.model_signature import (
25
25
  from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
26
26
  from snowflake.ml.modeling._internal.estimator_utils import (
27
27
  gather_dependencies,
28
- is_single_node,
29
28
  original_estimator_has_callable,
30
29
  transform_snowml_obj_to_sklearn_obj,
31
30
  validate_sklearn_args,
32
31
  )
32
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
33
33
  from snowflake.ml.modeling._internal.snowpark_handlers import (
34
- SklearnModelSelectionWrapperProvider,
35
34
  SnowparkHandlers as HandlersImpl,
36
35
  )
37
36
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -53,19 +52,54 @@ class GridSearchCV(BaseTransformer):
53
52
 
54
53
  Parameters
55
54
  ----------
56
- estimator : estimator object
55
+ estimator: estimator object
57
56
  This is assumed to implement the scikit-learn estimator interface.
58
57
  Either estimator needs to provide a ``score`` function,
59
58
  or ``scoring`` must be passed.
60
59
 
61
- param_grid : dict or list of dictionaries
60
+ param_grid: dict or list of dictionaries
62
61
  Dictionary with parameters names (`str`) as keys and lists of
63
62
  parameter settings to try as values, or a list of such
64
63
  dictionaries, in which case the grids spanned by each dictionary
65
64
  in the list are explored. This enables searching over any sequence
66
65
  of parameter settings.
67
66
 
68
- scoring : str, callable, list, tuple or dict, default=None
67
+ input_cols: Optional[Union[str, List[str]]]
68
+ A string or list of strings representing column names that contain features.
69
+ If this parameter is not specified, all columns in the input DataFrame except
70
+ the columns specified by label_cols and sample-weight_col parameters are
71
+ considered input columns.
72
+
73
+ label_cols: Optional[Union[str, List[str]]]
74
+ A string or list of strings representing column names that contain labels.
75
+ This is a required param for estimators, as there is no way to infer these
76
+ columns. If this parameter is not specified, then object is fitted without
77
+ labels(Like a transformer).
78
+
79
+ output_cols: Optional[Union[str, List[str]]]
80
+ A string or list of strings representing column names that will store the
81
+ output of predict and transform operations. The length of output_cols mus
82
+ match the expected number of output columns from the specific estimator or
83
+ transformer class used.
84
+ If this parameter is not specified, output column names are derived by
85
+ adding an OUTPUT_ prefix to the label column names. These inferred output
86
+ column names work for estimator's predict() method, but output_cols must
87
+ be set explicitly for transformers.
88
+
89
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
90
+ operations (such as train, transform, or inference). These specified column(s)
91
+ will remain untouched throughout the process. This option is helpful in scenarios
92
+ requiring automatic input_cols inference, but need to avoid using specific
93
+ columns, like index columns, during training or inference.
94
+
95
+ sample_weight_col: Optional[str]
96
+ A string representing the column name containing the examples’ weights.
97
+ This argument is only required when working with weighted datasets.
98
+
99
+ drop_input_cols: Optional[bool], default=False
100
+ If set, the response of predict(), transform() methods will not contain input columns.
101
+
102
+ scoring: str, callable, list, tuple or dict, default=None
69
103
  Strategy to evaluate the performance of the cross-validated model on
70
104
  the test set.
71
105
 
@@ -83,13 +117,13 @@ class GridSearchCV(BaseTransformer):
83
117
 
84
118
  See :ref:`multimetric_grid_search` for an example.
85
119
 
86
- n_jobs : int, default=None
120
+ n_jobs: int, default=None
87
121
  Number of jobs to run in parallel.
88
122
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
89
123
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
90
124
  for more details.
91
125
 
92
- refit : bool, str, or callable, default=True
126
+ refit: bool, str, or callable, default=True
93
127
  Refit an estimator using the best found parameters on the whole
94
128
  dataset.
95
129
 
@@ -120,7 +154,7 @@ class GridSearchCV(BaseTransformer):
120
154
  to see how to design a custom selection strategy using a callable
121
155
  via `refit`.
122
156
 
123
- cv : int, cross-validation generator or an iterable, default=None
157
+ cv: int, cross-validation generator or an iterable, default=None
124
158
  Determines the cross-validation splitting strategy.
125
159
  Possible inputs for cv are:
126
160
 
@@ -137,7 +171,7 @@ class GridSearchCV(BaseTransformer):
137
171
  Refer :ref:`User Guide <cross_validation>` for the various
138
172
  cross-validation strategies that can be used here.
139
173
 
140
- verbose : int
174
+ verbose: int
141
175
  Controls the verbosity: the higher, the more messages.
142
176
 
143
177
  - >1 : the computation time for each fold and parameter candidate is
@@ -146,7 +180,7 @@ class GridSearchCV(BaseTransformer):
146
180
  - >3 : the fold and candidate parameter indexes are also displayed
147
181
  together with the starting time of the computation.
148
182
 
149
- pre_dispatch : int, or str, default='2*n_jobs'
183
+ pre_dispatch: int, or str, default='2*n_jobs'
150
184
  Controls the number of jobs that get dispatched during parallel
151
185
  execution. Reducing this number can be useful to avoid an
152
186
  explosion of memory consumption when more jobs get dispatched
@@ -163,13 +197,13 @@ class GridSearchCV(BaseTransformer):
163
197
  - A str, giving an expression as a function of n_jobs,
164
198
  as in '2*n_jobs'
165
199
 
166
- error_score : 'raise' or numeric, default=np.nan
200
+ error_score: 'raise' or numeric, default=np.nan
167
201
  Value to assign to the score if an error occurs in estimator fitting.
168
202
  If set to 'raise', the error is raised. If a numeric value is given,
169
203
  FitFailedWarning is raised. This parameter does not affect the refit
170
204
  step, which will always raise the error.
171
205
 
172
- return_train_score : bool, default=False
206
+ return_train_score: bool, default=False
173
207
  If ``False``, the ``cv_results_`` attribute will not include training
174
208
  scores.
175
209
  Computing training scores is used to get insights on how different
@@ -177,35 +211,6 @@ class GridSearchCV(BaseTransformer):
177
211
  However computing the scores on the training set can be computationally
178
212
  expensive and is not strictly required to select the parameters that
179
213
  yield the best generalization performance.
180
-
181
- input_cols : Optional[Union[str, List[str]]]
182
- A string or list of strings representing column names that contain features.
183
- If this parameter is not specified, all columns in the input DataFrame except
184
- the columns specified by label_cols and sample-weight_col parameters are
185
- considered input columns.
186
-
187
- label_cols : Optional[Union[str, List[str]]]
188
- A string or list of strings representing column names that contain labels.
189
- This is a required param for estimators, as there is no way to infer these
190
- columns. If this parameter is not specified, then object is fitted without
191
- labels(Like a transformer).
192
-
193
- output_cols: Optional[Union[str, List[str]]]
194
- A string or list of strings representing column names that will store the
195
- output of predict and transform operations. The length of output_cols mus
196
- match the expected number of output columns from the specific estimator or
197
- transformer class used.
198
- If this parameter is not specified, output column names are derived by
199
- adding an OUTPUT_ prefix to the label column names. These inferred output
200
- column names work for estimator's predict() method, but output_cols must
201
- be set explicitly for transformers.
202
-
203
- sample_weight_col: Optional[str]
204
- A string representing the column name containing the examples’ weights.
205
- This argument is only required when working with weighted datasets.
206
-
207
- drop_input_cols: Optional[bool], default=False
208
- If set, the response of predict(), transform() methods will not contain input columns.
209
214
  """
210
215
  _ENABLE_DISTRIBUTED = True
211
216
 
@@ -225,11 +230,16 @@ class GridSearchCV(BaseTransformer):
225
230
  input_cols: Optional[Union[str, Iterable[str]]] = None,
226
231
  output_cols: Optional[Union[str, Iterable[str]]] = None,
227
232
  label_cols: Optional[Union[str, Iterable[str]]] = None,
233
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
228
234
  drop_input_cols: Optional[bool] = False,
229
235
  sample_weight_col: Optional[str] = None,
230
236
  ) -> None:
231
237
  super().__init__()
232
- deps: Set[str] = set(SklearnModelSelectionWrapperProvider().dependencies)
238
+ deps: Set[str] = {
239
+ f"numpy=={np.__version__}",
240
+ f"scikit-learn=={sklearn.__version__}",
241
+ f"cloudpickle=={cp.__version__}",
242
+ }
233
243
  deps = deps | gather_dependencies(estimator)
234
244
  self._deps = list(deps)
235
245
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -246,7 +256,7 @@ class GridSearchCV(BaseTransformer):
246
256
  "return_train_score": (return_train_score, False, False),
247
257
  }
248
258
  cleaned_up_init_args = validate_sklearn_args(args=init_args, klass=sklearn.model_selection.GridSearchCV)
249
- self._sklearn_object = sklearn.model_selection.GridSearchCV(
259
+ self._sklearn_object: Any = sklearn.model_selection.GridSearchCV(
250
260
  **cleaned_up_init_args,
251
261
  )
252
262
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
@@ -255,10 +265,10 @@ class GridSearchCV(BaseTransformer):
255
265
  self.set_label_cols(label_cols)
256
266
  self.set_drop_input_cols(drop_input_cols)
257
267
  self.set_sample_weight_col(sample_weight_col)
268
+ self.set_passthrough_cols(passthrough_cols)
258
269
  self._handlers: CVHandlers = HandlersImpl(
259
270
  class_name=self.__class__.__name__,
260
271
  subproject=_SUBPROJECT,
261
- wrapper_provider=SklearnModelSelectionWrapperProvider(),
262
272
  )
263
273
 
264
274
  def _get_rand_id(self) -> str:
@@ -270,21 +280,6 @@ class GridSearchCV(BaseTransformer):
270
280
  """
271
281
  return str(uuid4()).replace("-", "_").upper()
272
282
 
273
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
274
- """
275
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
276
-
277
- Args:
278
- dataset: Input dataset.
279
- """
280
- if not self.input_cols:
281
- cols = [c for c in dataset.columns if c not in self.get_label_cols() and c != self.sample_weight_col]
282
- self.set_input_cols(input_cols=cols)
283
-
284
- if not self.output_cols:
285
- cols = [identifier.concat_names(ids=["OUTPUT_", c]) for c in self.label_cols]
286
- self.set_output_cols(output_cols=cols)
287
-
288
283
  def _get_active_columns(self) -> List[str]:
289
284
  """ "Get the list of columns that are relevant to the transformer."""
290
285
  selected_cols = (
@@ -301,10 +296,6 @@ class GridSearchCV(BaseTransformer):
301
296
  For more details on this function, see [sklearn.model_selection.GridSearchCV.fit]
302
297
  (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV.fit)
303
298
 
304
-
305
- Raises:
306
- TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
307
-
308
299
  Args:
309
300
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
310
301
  Snowpark or Pandas DataFrame.
@@ -313,70 +304,37 @@ class GridSearchCV(BaseTransformer):
313
304
  self
314
305
  """
315
306
  self._infer_input_output_cols(dataset)
316
- if isinstance(dataset, pd.DataFrame):
317
- self._estimator = self._handlers.fit_pandas(
318
- dataset, self._sklearn_object, self.input_cols, self.label_cols, self.sample_weight_col
319
- )
320
- elif isinstance(dataset, DataFrame):
321
- self._fit_snowpark(dataset)
322
- else:
323
- raise TypeError(
324
- f"Unexpected dataset type: {type(dataset)}."
325
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
307
+ if self._sklearn_object.n_jobs is None:
308
+ self._sklearn_object.n_jobs = -1
309
+ if isinstance(dataset, DataFrame):
310
+ session = dataset._session
311
+ assert session is not None # keep mypy happy
312
+ # Validate that key package version in user workspace are supported in snowflake conda channel
313
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
314
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
315
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
326
316
  )
327
- self._is_fitted = True
328
- self._get_model_signatures(dataset)
329
- return self
330
317
 
331
- def _fit_snowpark(self, dataset: DataFrame) -> None:
332
- session = dataset._session
333
- assert session is not None # keep mypy happy
334
- # Validate that key package version in user workspace are supported in snowflake conda channel
335
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
336
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
337
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
338
- )
318
+ # Specify input columns so column pruning will be enforced
319
+ selected_cols = self._get_active_columns()
320
+ if len(selected_cols) > 0:
321
+ dataset = dataset.select(selected_cols)
339
322
 
340
- selected_cols = self._get_active_columns()
341
- if len(selected_cols) > 0:
342
- dataset = dataset.select(selected_cols)
323
+ self._snowpark_cols = dataset.select(self.input_cols).columns
343
324
 
344
- assert self._sklearn_object is not None
345
- is_distributed = not is_single_node(session) and self._ENABLE_DISTRIBUTED is True
346
- if is_distributed:
347
- # Set the default value of the `n_jobs` attribute for the estimator.
348
- # If minus one is set, it will not be abided by in the UDTF, so we set that to the default value as well.
349
- if hasattr(self._sklearn_object.estimator, "n_jobs") and self._sklearn_object.estimator.n_jobs in [
350
- None,
351
- -1,
352
- ]:
353
- self._sklearn_object.estimator.n_jobs = DEFAULT_UDTF_NJOBS
354
- self._sklearn_object = self._handlers.fit_search_snowpark(
355
- param_grid=ParameterGrid(self._sklearn_object.param_grid),
356
- dataset=dataset,
357
- session=session,
358
- estimator=self._sklearn_object,
359
- dependencies=self._get_dependencies(),
360
- udf_imports=["sklearn"],
361
- input_cols=self.input_cols,
362
- label_cols=self.label_cols,
363
- sample_weight_col=self.sample_weight_col,
364
- )
365
- else:
366
- # Fall back with stored procedure implementation
367
- # set the parallel factor to default to minus one, to fully accelerate the cores in single node
368
- if self._sklearn_object.n_jobs is None:
369
- self._sklearn_object.n_jobs = -1
370
-
371
- self._sklearn_object = self._handlers.fit_snowpark(
372
- dataset,
373
- session,
374
- self._sklearn_object,
375
- ["snowflake-snowpark-python"] + self._get_dependencies(),
376
- self.input_cols,
377
- self.label_cols,
378
- self.sample_weight_col,
379
- )
325
+ model_trainer = ModelTrainerBuilder.build(
326
+ estimator=self._sklearn_object,
327
+ dataset=dataset,
328
+ input_cols=self.input_cols,
329
+ label_cols=self.label_cols,
330
+ sample_weight_col=self.sample_weight_col,
331
+ autogenerated=False,
332
+ subproject=_SUBPROJECT,
333
+ )
334
+ self._sklearn_object = model_trainer.train()
335
+ self._is_fitted = True
336
+ self._get_model_signatures(dataset)
337
+ return self
380
338
 
381
339
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
382
340
  if self._drop_input_cols:
@@ -433,7 +391,7 @@ class GridSearchCV(BaseTransformer):
433
391
  # input cols need to match unquoted / quoted
434
392
  input_cols = self.input_cols
435
393
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
436
- quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
394
+ quoted_input_cols = identifier.get_inferred_names(unquoted_input_cols)
437
395
 
438
396
  estimator = self._sklearn_object
439
397
 
@@ -530,10 +488,6 @@ class GridSearchCV(BaseTransformer):
530
488
  project=_PROJECT,
531
489
  subproject=_SUBPROJECT,
532
490
  )
533
- @telemetry.add_stmt_params_to_df(
534
- project=_PROJECT,
535
- subproject=_SUBPROJECT,
536
- )
537
491
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
538
492
  """Call predict on the estimator with the best found parameters
539
493
  For more details on this function, see [sklearn.model_selection.GridSearchCV.predict]
@@ -576,10 +530,6 @@ class GridSearchCV(BaseTransformer):
576
530
  project=_PROJECT,
577
531
  subproject=_SUBPROJECT,
578
532
  )
579
- @telemetry.add_stmt_params_to_df(
580
- project=_PROJECT,
581
- subproject=_SUBPROJECT,
582
- )
583
533
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
584
534
  """Call transform on the estimator with the best found parameters
585
535
  For more details on this function, see [sklearn.model_selection.GridSearchCV.transform]
@@ -643,10 +593,6 @@ class GridSearchCV(BaseTransformer):
643
593
  project=_PROJECT,
644
594
  subproject=_SUBPROJECT,
645
595
  )
646
- @telemetry.add_stmt_params_to_df(
647
- project=_PROJECT,
648
- subproject=_SUBPROJECT,
649
- )
650
596
  def predict_proba(
651
597
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
652
598
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -684,10 +630,6 @@ class GridSearchCV(BaseTransformer):
684
630
  project=_PROJECT,
685
631
  subproject=_SUBPROJECT,
686
632
  )
687
- @telemetry.add_stmt_params_to_df(
688
- project=_PROJECT,
689
- subproject=_SUBPROJECT,
690
- )
691
633
  def predict_log_proba(
692
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
693
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -726,10 +668,6 @@ class GridSearchCV(BaseTransformer):
726
668
  project=_PROJECT,
727
669
  subproject=_SUBPROJECT,
728
670
  )
729
- @telemetry.add_stmt_params_to_df(
730
- project=_PROJECT,
731
- subproject=_SUBPROJECT,
732
- )
733
671
  def decision_function(
734
672
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
735
673
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -766,6 +704,8 @@ class GridSearchCV(BaseTransformer):
766
704
  @available_if(original_estimator_has_callable("score")) # type: ignore[misc]
767
705
  def score(self, dataset: Union[DataFrame, pd.DataFrame]) -> float:
768
706
  """
707
+ If implemented by the original estimator, return the score for the dataset.
708
+
769
709
  Args:
770
710
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
771
711
  Snowpark or Pandas DataFrame.
@@ -818,9 +758,9 @@ class GridSearchCV(BaseTransformer):
818
758
  # For classifier, the type of predict is the same as the type of label
819
759
  if self._sklearn_object._estimator_type == "classifier":
820
760
  # label columns is the desired type for output
821
- outputs = _infer_signature(dataset[self.label_cols], "output")
761
+ outputs = list(_infer_signature(dataset[self.label_cols], "output"))
822
762
  # rename the output columns
823
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
763
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
824
764
  self._model_signature_dict["predict"] = ModelSignature(
825
765
  inputs, ([] if self._drop_input_cols else inputs) + outputs
826
766
  )
@@ -857,6 +797,9 @@ class GridSearchCV(BaseTransformer):
857
797
  return self._model_signature_dict
858
798
 
859
799
  def to_sklearn(self) -> sklearn.model_selection.GridSearchCV:
800
+ """
801
+ Get sklearn.model_selection.GridSearchCV object.
802
+ """
860
803
  assert self._sklearn_object is not None
861
804
  return self._sklearn_object
862
805