snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class QuadraticDiscriminantAnalysis(BaseTransformer):
57
58
  r"""Quadratic Discriminant Analysis
58
59
  For more details on this class, see [sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis]
@@ -60,6 +61,51 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  priors: array-like of shape (n_classes,), default=None
64
110
  Class priors. By default, the class proportions are inferred from the
65
111
  training data.
@@ -79,35 +125,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
79
125
  of samples in class k. This parameter does not affect the
80
126
  predictions. It only controls a warning that is raised when features
81
127
  are considered to be colinear.
82
-
83
- input_cols: Optional[Union[str, List[str]]]
84
- A string or list of strings representing column names that contain features.
85
- If this parameter is not specified, all columns in the input DataFrame except
86
- the columns specified by label_cols and sample_weight_col parameters are
87
- considered input columns.
88
-
89
- label_cols: Optional[Union[str, List[str]]]
90
- A string or list of strings representing column names that contain labels.
91
- This is a required param for estimators, as there is no way to infer these
92
- columns. If this parameter is not specified, then object is fitted without
93
- labels (like a transformer).
94
-
95
- output_cols: Optional[Union[str, List[str]]]
96
- A string or list of strings representing column names that will store the
97
- output of predict and transform operations. The length of output_cols must
98
- match the expected number of output columns from the specific estimator or
99
- transformer class used.
100
- If this parameter is not specified, output column names are derived by
101
- adding an OUTPUT_ prefix to the label column names. These inferred output
102
- column names work for estimator's predict() method, but output_cols must
103
- be set explicitly for transformers.
104
-
105
- sample_weight_col: Optional[str]
106
- A string representing the column name containing the sample weights.
107
- This argument is only required when working with weighted datasets.
108
-
109
- drop_input_cols: Optional[bool], default=False
110
- If set, the response of predict(), transform() methods will not contain input columns.
111
128
  """
112
129
 
113
130
  def __init__( # type: ignore[no-untyped-def]
@@ -120,6 +137,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
120
137
  input_cols: Optional[Union[str, Iterable[str]]] = None,
121
138
  output_cols: Optional[Union[str, Iterable[str]]] = None,
122
139
  label_cols: Optional[Union[str, Iterable[str]]] = None,
140
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
123
141
  drop_input_cols: Optional[bool] = False,
124
142
  sample_weight_col: Optional[str] = None,
125
143
  ) -> None:
@@ -128,9 +146,10 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
128
146
  self.set_input_cols(input_cols)
129
147
  self.set_output_cols(output_cols)
130
148
  self.set_label_cols(label_cols)
149
+ self.set_passthrough_cols(passthrough_cols)
131
150
  self.set_drop_input_cols(drop_input_cols)
132
151
  self.set_sample_weight_col(sample_weight_col)
133
- deps = set(SklearnWrapperProvider().dependencies)
152
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
134
153
 
135
154
  self._deps = list(deps)
136
155
 
@@ -142,13 +161,14 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
142
161
  args=init_args,
143
162
  klass=sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
144
163
  )
145
- self._sklearn_object = sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(
164
+ self._sklearn_object: Any = sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(
146
165
  **cleaned_up_init_args,
147
166
  )
148
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
149
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
150
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
151
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
170
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
+ self._autogenerated = True
152
172
 
153
173
  def _get_rand_id(self) -> str:
154
174
  """
@@ -159,24 +179,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
159
179
  """
160
180
  return str(uuid4()).replace("-", "_").upper()
161
181
 
162
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
163
- """
164
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
165
-
166
- Args:
167
- dataset: Input dataset.
168
- """
169
- if not self.input_cols:
170
- cols = [
171
- c for c in dataset.columns
172
- if c not in self.get_label_cols() and c != self.sample_weight_col
173
- ]
174
- self.set_input_cols(input_cols=cols)
175
-
176
- if not self.output_cols:
177
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
178
- self.set_output_cols(output_cols=cols)
179
-
180
182
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "QuadraticDiscriminantAnalysis":
181
183
  """
182
184
  Input columns setter.
@@ -222,54 +224,48 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
222
224
  self
223
225
  """
224
226
  self._infer_input_output_cols(dataset)
225
- if isinstance(dataset, pd.DataFrame):
226
- assert self._sklearn_object is not None # keep mypy happy
227
- self._sklearn_object = self._handlers.fit_pandas(
228
- dataset,
229
- self._sklearn_object,
230
- self.input_cols,
231
- self.label_cols,
232
- self.sample_weight_col
233
- )
234
- elif isinstance(dataset, DataFrame):
235
- self._fit_snowpark(dataset)
236
- else:
237
- raise TypeError(
238
- f"Unexpected dataset type: {type(dataset)}."
239
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
240
- )
227
+ if isinstance(dataset, DataFrame):
228
+ session = dataset._session
229
+ assert session is not None # keep mypy happy
230
+ # Validate that key package version in user workspace are supported in snowflake conda channel
231
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
232
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
233
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
234
+
235
+ # Specify input columns so column pruning will be enforced
236
+ selected_cols = self._get_active_columns()
237
+ if len(selected_cols) > 0:
238
+ dataset = dataset.select(selected_cols)
239
+
240
+ self._snowpark_cols = dataset.select(self.input_cols).columns
241
+
242
+ # If we are already in a stored procedure, no need to kick off another one.
243
+ if SNOWML_SPROC_ENV in os.environ:
244
+ statement_params = telemetry.get_function_usage_statement_params(
245
+ project=_PROJECT,
246
+ subproject=_SUBPROJECT,
247
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), QuadraticDiscriminantAnalysis.__class__.__name__),
248
+ api_calls=[Session.call],
249
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
250
+ )
251
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
252
+ pd_df.columns = dataset.columns
253
+ dataset = pd_df
254
+
255
+ model_trainer = ModelTrainerBuilder.build(
256
+ estimator=self._sklearn_object,
257
+ dataset=dataset,
258
+ input_cols=self.input_cols,
259
+ label_cols=self.label_cols,
260
+ sample_weight_col=self.sample_weight_col,
261
+ autogenerated=self._autogenerated,
262
+ subproject=_SUBPROJECT
263
+ )
264
+ self._sklearn_object = model_trainer.train()
241
265
  self._is_fitted = True
242
266
  self._get_model_signatures(dataset)
243
267
  return self
244
268
 
245
- def _fit_snowpark(self, dataset: DataFrame) -> None:
246
- session = dataset._session
247
- assert session is not None # keep mypy happy
248
- # Validate that key package version in user workspace are supported in snowflake conda channel
249
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
250
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
251
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
252
-
253
- # Specify input columns so column pruning will be enforced
254
- selected_cols = self._get_active_columns()
255
- if len(selected_cols) > 0:
256
- dataset = dataset.select(selected_cols)
257
-
258
- estimator = self._sklearn_object
259
- assert estimator is not None # Keep mypy happy
260
-
261
- self._snowpark_cols = dataset.select(self.input_cols).columns
262
-
263
- self._sklearn_object = self._handlers.fit_snowpark(
264
- dataset,
265
- session,
266
- estimator,
267
- ["snowflake-snowpark-python"] + self._get_dependencies(),
268
- self.input_cols,
269
- self.label_cols,
270
- self.sample_weight_col,
271
- )
272
-
273
269
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
274
270
  if self._drop_input_cols:
275
271
  return []
@@ -457,11 +453,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
457
453
  subproject=_SUBPROJECT,
458
454
  custom_tags=dict([("autogen", True)]),
459
455
  )
460
- @telemetry.add_stmt_params_to_df(
461
- project=_PROJECT,
462
- subproject=_SUBPROJECT,
463
- custom_tags=dict([("autogen", True)]),
464
- )
465
456
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
466
457
  """Perform classification on an array of test vectors X
467
458
  For more details on this function, see [sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict]
@@ -515,11 +506,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
515
506
  subproject=_SUBPROJECT,
516
507
  custom_tags=dict([("autogen", True)]),
517
508
  )
518
- @telemetry.add_stmt_params_to_df(
519
- project=_PROJECT,
520
- subproject=_SUBPROJECT,
521
- custom_tags=dict([("autogen", True)]),
522
- )
523
509
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
524
510
  """Method not supported for this class.
525
511
 
@@ -576,7 +562,8 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
576
562
  if False:
577
563
  self.fit(dataset)
578
564
  assert self._sklearn_object is not None
579
- return self._sklearn_object.labels_
565
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
566
+ return labels
580
567
  else:
581
568
  raise NotImplementedError
582
569
 
@@ -612,6 +599,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
612
599
  output_cols = []
613
600
 
614
601
  # Make sure column names are valid snowflake identifiers.
602
+ assert output_cols is not None # Make MyPy happy
615
603
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
616
604
 
617
605
  return rv
@@ -622,11 +610,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
622
610
  subproject=_SUBPROJECT,
623
611
  custom_tags=dict([("autogen", True)]),
624
612
  )
625
- @telemetry.add_stmt_params_to_df(
626
- project=_PROJECT,
627
- subproject=_SUBPROJECT,
628
- custom_tags=dict([("autogen", True)]),
629
- )
630
613
  def predict_proba(
631
614
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
632
615
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -669,11 +652,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
669
652
  subproject=_SUBPROJECT,
670
653
  custom_tags=dict([("autogen", True)]),
671
654
  )
672
- @telemetry.add_stmt_params_to_df(
673
- project=_PROJECT,
674
- subproject=_SUBPROJECT,
675
- custom_tags=dict([("autogen", True)]),
676
- )
677
655
  def predict_log_proba(
678
656
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
679
657
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -712,16 +690,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
712
690
  return output_df
713
691
 
714
692
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
715
- @telemetry.send_api_usage_telemetry(
716
- project=_PROJECT,
717
- subproject=_SUBPROJECT,
718
- custom_tags=dict([("autogen", True)]),
719
- )
720
- @telemetry.add_stmt_params_to_df(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
693
  def decision_function(
726
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
727
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -824,11 +792,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
824
792
  subproject=_SUBPROJECT,
825
793
  custom_tags=dict([("autogen", True)]),
826
794
  )
827
- @telemetry.add_stmt_params_to_df(
828
- project=_PROJECT,
829
- subproject=_SUBPROJECT,
830
- custom_tags=dict([("autogen", True)]),
831
- )
832
795
  def kneighbors(
833
796
  self,
834
797
  dataset: Union[DataFrame, pd.DataFrame],
@@ -888,18 +851,28 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
888
851
  # For classifier, the type of predict is the same as the type of label
889
852
  if self._sklearn_object._estimator_type == 'classifier':
890
853
  # label columns is the desired type for output
891
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
854
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
892
855
  # rename the output columns
893
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
856
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
894
857
  self._model_signature_dict["predict"] = ModelSignature(inputs,
895
858
  ([] if self._drop_input_cols else inputs)
896
859
  + outputs)
860
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
861
+ # For outlier models, returns -1 for outliers and 1 for inliers.
862
+ # Clusterer returns int64 cluster labels.
863
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
864
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
865
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
866
+ ([] if self._drop_input_cols else inputs)
867
+ + outputs)
868
+
897
869
  # For regressor, the type of predict is float64
898
870
  elif self._sklearn_object._estimator_type == 'regressor':
899
871
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
900
872
  self._model_signature_dict["predict"] = ModelSignature(inputs,
901
873
  ([] if self._drop_input_cols else inputs)
902
874
  + outputs)
875
+
903
876
  for prob_func in PROB_FUNCTIONS:
904
877
  if hasattr(self, prob_func):
905
878
  output_cols_prefix: str = f"{prob_func}_"