snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RANSACRegressor(BaseTransformer):
57
58
  r"""RANSAC (RANdom SAmple Consensus) algorithm
58
59
  For more details on this class, see [sklearn.linear_model.RANSACRegressor]
@@ -60,6 +61,51 @@ class RANSACRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: object, default=None
64
110
  Base estimator object which implements the following methods:
65
111
 
@@ -149,35 +195,6 @@ class RANSACRegressor(BaseTransformer):
149
195
  The generator used to initialize the centers.
150
196
  Pass an int for reproducible output across multiple function calls.
151
197
  See :term:`Glossary <random_state>`.
152
-
153
- input_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that contain features.
155
- If this parameter is not specified, all columns in the input DataFrame except
156
- the columns specified by label_cols and sample_weight_col parameters are
157
- considered input columns.
158
-
159
- label_cols: Optional[Union[str, List[str]]]
160
- A string or list of strings representing column names that contain labels.
161
- This is a required param for estimators, as there is no way to infer these
162
- columns. If this parameter is not specified, then object is fitted without
163
- labels (like a transformer).
164
-
165
- output_cols: Optional[Union[str, List[str]]]
166
- A string or list of strings representing column names that will store the
167
- output of predict and transform operations. The length of output_cols must
168
- match the expected number of output columns from the specific estimator or
169
- transformer class used.
170
- If this parameter is not specified, output column names are derived by
171
- adding an OUTPUT_ prefix to the label column names. These inferred output
172
- column names work for estimator's predict() method, but output_cols must
173
- be set explicitly for transformers.
174
-
175
- sample_weight_col: Optional[str]
176
- A string representing the column name containing the sample weights.
177
- This argument is only required when working with weighted datasets.
178
-
179
- drop_input_cols: Optional[bool], default=False
180
- If set, the response of predict(), transform() methods will not contain input columns.
181
198
  """
182
199
 
183
200
  def __init__( # type: ignore[no-untyped-def]
@@ -198,6 +215,7 @@ class RANSACRegressor(BaseTransformer):
198
215
  input_cols: Optional[Union[str, Iterable[str]]] = None,
199
216
  output_cols: Optional[Union[str, Iterable[str]]] = None,
200
217
  label_cols: Optional[Union[str, Iterable[str]]] = None,
218
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
201
219
  drop_input_cols: Optional[bool] = False,
202
220
  sample_weight_col: Optional[str] = None,
203
221
  ) -> None:
@@ -206,9 +224,10 @@ class RANSACRegressor(BaseTransformer):
206
224
  self.set_input_cols(input_cols)
207
225
  self.set_output_cols(output_cols)
208
226
  self.set_label_cols(label_cols)
227
+ self.set_passthrough_cols(passthrough_cols)
209
228
  self.set_drop_input_cols(drop_input_cols)
210
229
  self.set_sample_weight_col(sample_weight_col)
211
- deps = set(SklearnWrapperProvider().dependencies)
230
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
212
231
  deps = deps | gather_dependencies(estimator)
213
232
  self._deps = list(deps)
214
233
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -228,13 +247,14 @@ class RANSACRegressor(BaseTransformer):
228
247
  args=init_args,
229
248
  klass=sklearn.linear_model.RANSACRegressor
230
249
  )
231
- self._sklearn_object = sklearn.linear_model.RANSACRegressor(
250
+ self._sklearn_object: Any = sklearn.linear_model.RANSACRegressor(
232
251
  **cleaned_up_init_args,
233
252
  )
234
253
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
235
254
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
236
255
  self._snowpark_cols: Optional[List[str]] = self.input_cols
237
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
256
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
257
+ self._autogenerated = True
238
258
 
239
259
  def _get_rand_id(self) -> str:
240
260
  """
@@ -245,24 +265,6 @@ class RANSACRegressor(BaseTransformer):
245
265
  """
246
266
  return str(uuid4()).replace("-", "_").upper()
247
267
 
248
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
249
- """
250
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
251
-
252
- Args:
253
- dataset: Input dataset.
254
- """
255
- if not self.input_cols:
256
- cols = [
257
- c for c in dataset.columns
258
- if c not in self.get_label_cols() and c != self.sample_weight_col
259
- ]
260
- self.set_input_cols(input_cols=cols)
261
-
262
- if not self.output_cols:
263
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
264
- self.set_output_cols(output_cols=cols)
265
-
266
268
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RANSACRegressor":
267
269
  """
268
270
  Input columns setter.
@@ -308,54 +310,48 @@ class RANSACRegressor(BaseTransformer):
308
310
  self
309
311
  """
310
312
  self._infer_input_output_cols(dataset)
311
- if isinstance(dataset, pd.DataFrame):
312
- assert self._sklearn_object is not None # keep mypy happy
313
- self._sklearn_object = self._handlers.fit_pandas(
314
- dataset,
315
- self._sklearn_object,
316
- self.input_cols,
317
- self.label_cols,
318
- self.sample_weight_col
319
- )
320
- elif isinstance(dataset, DataFrame):
321
- self._fit_snowpark(dataset)
322
- else:
323
- raise TypeError(
324
- f"Unexpected dataset type: {type(dataset)}."
325
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
326
- )
313
+ if isinstance(dataset, DataFrame):
314
+ session = dataset._session
315
+ assert session is not None # keep mypy happy
316
+ # Validate that key package version in user workspace are supported in snowflake conda channel
317
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
318
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
319
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
320
+
321
+ # Specify input columns so column pruning will be enforced
322
+ selected_cols = self._get_active_columns()
323
+ if len(selected_cols) > 0:
324
+ dataset = dataset.select(selected_cols)
325
+
326
+ self._snowpark_cols = dataset.select(self.input_cols).columns
327
+
328
+ # If we are already in a stored procedure, no need to kick off another one.
329
+ if SNOWML_SPROC_ENV in os.environ:
330
+ statement_params = telemetry.get_function_usage_statement_params(
331
+ project=_PROJECT,
332
+ subproject=_SUBPROJECT,
333
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RANSACRegressor.__class__.__name__),
334
+ api_calls=[Session.call],
335
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
+ )
337
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
338
+ pd_df.columns = dataset.columns
339
+ dataset = pd_df
340
+
341
+ model_trainer = ModelTrainerBuilder.build(
342
+ estimator=self._sklearn_object,
343
+ dataset=dataset,
344
+ input_cols=self.input_cols,
345
+ label_cols=self.label_cols,
346
+ sample_weight_col=self.sample_weight_col,
347
+ autogenerated=self._autogenerated,
348
+ subproject=_SUBPROJECT
349
+ )
350
+ self._sklearn_object = model_trainer.train()
327
351
  self._is_fitted = True
328
352
  self._get_model_signatures(dataset)
329
353
  return self
330
354
 
331
- def _fit_snowpark(self, dataset: DataFrame) -> None:
332
- session = dataset._session
333
- assert session is not None # keep mypy happy
334
- # Validate that key package version in user workspace are supported in snowflake conda channel
335
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
336
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
337
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
338
-
339
- # Specify input columns so column pruning will be enforced
340
- selected_cols = self._get_active_columns()
341
- if len(selected_cols) > 0:
342
- dataset = dataset.select(selected_cols)
343
-
344
- estimator = self._sklearn_object
345
- assert estimator is not None # Keep mypy happy
346
-
347
- self._snowpark_cols = dataset.select(self.input_cols).columns
348
-
349
- self._sklearn_object = self._handlers.fit_snowpark(
350
- dataset,
351
- session,
352
- estimator,
353
- ["snowflake-snowpark-python"] + self._get_dependencies(),
354
- self.input_cols,
355
- self.label_cols,
356
- self.sample_weight_col,
357
- )
358
-
359
355
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
360
356
  if self._drop_input_cols:
361
357
  return []
@@ -543,11 +539,6 @@ class RANSACRegressor(BaseTransformer):
543
539
  subproject=_SUBPROJECT,
544
540
  custom_tags=dict([("autogen", True)]),
545
541
  )
546
- @telemetry.add_stmt_params_to_df(
547
- project=_PROJECT,
548
- subproject=_SUBPROJECT,
549
- custom_tags=dict([("autogen", True)]),
550
- )
551
542
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
552
543
  """Predict using the estimated model
553
544
  For more details on this function, see [sklearn.linear_model.RANSACRegressor.predict]
@@ -601,11 +592,6 @@ class RANSACRegressor(BaseTransformer):
601
592
  subproject=_SUBPROJECT,
602
593
  custom_tags=dict([("autogen", True)]),
603
594
  )
604
- @telemetry.add_stmt_params_to_df(
605
- project=_PROJECT,
606
- subproject=_SUBPROJECT,
607
- custom_tags=dict([("autogen", True)]),
608
- )
609
595
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
610
596
  """Method not supported for this class.
611
597
 
@@ -662,7 +648,8 @@ class RANSACRegressor(BaseTransformer):
662
648
  if False:
663
649
  self.fit(dataset)
664
650
  assert self._sklearn_object is not None
665
- return self._sklearn_object.labels_
651
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
652
+ return labels
666
653
  else:
667
654
  raise NotImplementedError
668
655
 
@@ -698,6 +685,7 @@ class RANSACRegressor(BaseTransformer):
698
685
  output_cols = []
699
686
 
700
687
  # Make sure column names are valid snowflake identifiers.
688
+ assert output_cols is not None # Make MyPy happy
701
689
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
702
690
 
703
691
  return rv
@@ -708,11 +696,6 @@ class RANSACRegressor(BaseTransformer):
708
696
  subproject=_SUBPROJECT,
709
697
  custom_tags=dict([("autogen", True)]),
710
698
  )
711
- @telemetry.add_stmt_params_to_df(
712
- project=_PROJECT,
713
- subproject=_SUBPROJECT,
714
- custom_tags=dict([("autogen", True)]),
715
- )
716
699
  def predict_proba(
717
700
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
718
701
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -753,11 +736,6 @@ class RANSACRegressor(BaseTransformer):
753
736
  subproject=_SUBPROJECT,
754
737
  custom_tags=dict([("autogen", True)]),
755
738
  )
756
- @telemetry.add_stmt_params_to_df(
757
- project=_PROJECT,
758
- subproject=_SUBPROJECT,
759
- custom_tags=dict([("autogen", True)]),
760
- )
761
739
  def predict_log_proba(
762
740
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
763
741
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -794,16 +772,6 @@ class RANSACRegressor(BaseTransformer):
794
772
  return output_df
795
773
 
796
774
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
797
- @telemetry.send_api_usage_telemetry(
798
- project=_PROJECT,
799
- subproject=_SUBPROJECT,
800
- custom_tags=dict([("autogen", True)]),
801
- )
802
- @telemetry.add_stmt_params_to_df(
803
- project=_PROJECT,
804
- subproject=_SUBPROJECT,
805
- custom_tags=dict([("autogen", True)]),
806
- )
807
775
  def decision_function(
808
776
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
809
777
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -904,11 +872,6 @@ class RANSACRegressor(BaseTransformer):
904
872
  subproject=_SUBPROJECT,
905
873
  custom_tags=dict([("autogen", True)]),
906
874
  )
907
- @telemetry.add_stmt_params_to_df(
908
- project=_PROJECT,
909
- subproject=_SUBPROJECT,
910
- custom_tags=dict([("autogen", True)]),
911
- )
912
875
  def kneighbors(
913
876
  self,
914
877
  dataset: Union[DataFrame, pd.DataFrame],
@@ -968,18 +931,28 @@ class RANSACRegressor(BaseTransformer):
968
931
  # For classifier, the type of predict is the same as the type of label
969
932
  if self._sklearn_object._estimator_type == 'classifier':
970
933
  # label columns is the desired type for output
971
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
934
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
935
  # rename the output columns
973
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
936
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
937
  self._model_signature_dict["predict"] = ModelSignature(inputs,
975
938
  ([] if self._drop_input_cols else inputs)
976
939
  + outputs)
940
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
941
+ # For outlier models, returns -1 for outliers and 1 for inliers.
942
+ # Clusterer returns int64 cluster labels.
943
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
944
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
945
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
946
+ ([] if self._drop_input_cols else inputs)
947
+ + outputs)
948
+
977
949
  # For regressor, the type of predict is float64
978
950
  elif self._sklearn_object._estimator_type == 'regressor':
979
951
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
980
952
  self._model_signature_dict["predict"] = ModelSignature(inputs,
981
953
  ([] if self._drop_input_cols else inputs)
982
954
  + outputs)
955
+
983
956
  for prob_func in PROB_FUNCTIONS:
984
957
  if hasattr(self, prob_func):
985
958
  output_cols_prefix: str = f"{prob_func}_"