snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RANSACRegressor(BaseTransformer):
|
57
58
|
r"""RANSAC (RANdom SAmple Consensus) algorithm
|
58
59
|
For more details on this class, see [sklearn.linear_model.RANSACRegressor]
|
@@ -60,6 +61,51 @@ class RANSACRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
Base estimator object which implements the following methods:
|
65
111
|
|
@@ -149,35 +195,6 @@ class RANSACRegressor(BaseTransformer):
|
|
149
195
|
The generator used to initialize the centers.
|
150
196
|
Pass an int for reproducible output across multiple function calls.
|
151
197
|
See :term:`Glossary <random_state>`.
|
152
|
-
|
153
|
-
input_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that contain features.
|
155
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
156
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
157
|
-
considered input columns.
|
158
|
-
|
159
|
-
label_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or list of strings representing column names that contain labels.
|
161
|
-
This is a required param for estimators, as there is no way to infer these
|
162
|
-
columns. If this parameter is not specified, then object is fitted without
|
163
|
-
labels (like a transformer).
|
164
|
-
|
165
|
-
output_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or list of strings representing column names that will store the
|
167
|
-
output of predict and transform operations. The length of output_cols must
|
168
|
-
match the expected number of output columns from the specific estimator or
|
169
|
-
transformer class used.
|
170
|
-
If this parameter is not specified, output column names are derived by
|
171
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
172
|
-
column names work for estimator's predict() method, but output_cols must
|
173
|
-
be set explicitly for transformers.
|
174
|
-
|
175
|
-
sample_weight_col: Optional[str]
|
176
|
-
A string representing the column name containing the sample weights.
|
177
|
-
This argument is only required when working with weighted datasets.
|
178
|
-
|
179
|
-
drop_input_cols: Optional[bool], default=False
|
180
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
181
198
|
"""
|
182
199
|
|
183
200
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -198,6 +215,7 @@ class RANSACRegressor(BaseTransformer):
|
|
198
215
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
199
216
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
200
217
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
218
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
219
|
drop_input_cols: Optional[bool] = False,
|
202
220
|
sample_weight_col: Optional[str] = None,
|
203
221
|
) -> None:
|
@@ -206,9 +224,10 @@ class RANSACRegressor(BaseTransformer):
|
|
206
224
|
self.set_input_cols(input_cols)
|
207
225
|
self.set_output_cols(output_cols)
|
208
226
|
self.set_label_cols(label_cols)
|
227
|
+
self.set_passthrough_cols(passthrough_cols)
|
209
228
|
self.set_drop_input_cols(drop_input_cols)
|
210
229
|
self.set_sample_weight_col(sample_weight_col)
|
211
|
-
deps = set(
|
230
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
212
231
|
deps = deps | gather_dependencies(estimator)
|
213
232
|
self._deps = list(deps)
|
214
233
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -228,13 +247,14 @@ class RANSACRegressor(BaseTransformer):
|
|
228
247
|
args=init_args,
|
229
248
|
klass=sklearn.linear_model.RANSACRegressor
|
230
249
|
)
|
231
|
-
self._sklearn_object = sklearn.linear_model.RANSACRegressor(
|
250
|
+
self._sklearn_object: Any = sklearn.linear_model.RANSACRegressor(
|
232
251
|
**cleaned_up_init_args,
|
233
252
|
)
|
234
253
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
235
254
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
236
255
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
237
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
256
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
257
|
+
self._autogenerated = True
|
238
258
|
|
239
259
|
def _get_rand_id(self) -> str:
|
240
260
|
"""
|
@@ -245,24 +265,6 @@ class RANSACRegressor(BaseTransformer):
|
|
245
265
|
"""
|
246
266
|
return str(uuid4()).replace("-", "_").upper()
|
247
267
|
|
248
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
249
|
-
"""
|
250
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
251
|
-
|
252
|
-
Args:
|
253
|
-
dataset: Input dataset.
|
254
|
-
"""
|
255
|
-
if not self.input_cols:
|
256
|
-
cols = [
|
257
|
-
c for c in dataset.columns
|
258
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
259
|
-
]
|
260
|
-
self.set_input_cols(input_cols=cols)
|
261
|
-
|
262
|
-
if not self.output_cols:
|
263
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
264
|
-
self.set_output_cols(output_cols=cols)
|
265
|
-
|
266
268
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RANSACRegressor":
|
267
269
|
"""
|
268
270
|
Input columns setter.
|
@@ -308,54 +310,48 @@ class RANSACRegressor(BaseTransformer):
|
|
308
310
|
self
|
309
311
|
"""
|
310
312
|
self._infer_input_output_cols(dataset)
|
311
|
-
if isinstance(dataset,
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
self.
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
313
|
+
if isinstance(dataset, DataFrame):
|
314
|
+
session = dataset._session
|
315
|
+
assert session is not None # keep mypy happy
|
316
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
317
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
318
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
319
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
320
|
+
|
321
|
+
# Specify input columns so column pruning will be enforced
|
322
|
+
selected_cols = self._get_active_columns()
|
323
|
+
if len(selected_cols) > 0:
|
324
|
+
dataset = dataset.select(selected_cols)
|
325
|
+
|
326
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
|
+
|
328
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
329
|
+
if SNOWML_SPROC_ENV in os.environ:
|
330
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
331
|
+
project=_PROJECT,
|
332
|
+
subproject=_SUBPROJECT,
|
333
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RANSACRegressor.__class__.__name__),
|
334
|
+
api_calls=[Session.call],
|
335
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
336
|
+
)
|
337
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
338
|
+
pd_df.columns = dataset.columns
|
339
|
+
dataset = pd_df
|
340
|
+
|
341
|
+
model_trainer = ModelTrainerBuilder.build(
|
342
|
+
estimator=self._sklearn_object,
|
343
|
+
dataset=dataset,
|
344
|
+
input_cols=self.input_cols,
|
345
|
+
label_cols=self.label_cols,
|
346
|
+
sample_weight_col=self.sample_weight_col,
|
347
|
+
autogenerated=self._autogenerated,
|
348
|
+
subproject=_SUBPROJECT
|
349
|
+
)
|
350
|
+
self._sklearn_object = model_trainer.train()
|
327
351
|
self._is_fitted = True
|
328
352
|
self._get_model_signatures(dataset)
|
329
353
|
return self
|
330
354
|
|
331
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
332
|
-
session = dataset._session
|
333
|
-
assert session is not None # keep mypy happy
|
334
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
335
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
336
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
337
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
338
|
-
|
339
|
-
# Specify input columns so column pruning will be enforced
|
340
|
-
selected_cols = self._get_active_columns()
|
341
|
-
if len(selected_cols) > 0:
|
342
|
-
dataset = dataset.select(selected_cols)
|
343
|
-
|
344
|
-
estimator = self._sklearn_object
|
345
|
-
assert estimator is not None # Keep mypy happy
|
346
|
-
|
347
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
348
|
-
|
349
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
350
|
-
dataset,
|
351
|
-
session,
|
352
|
-
estimator,
|
353
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
354
|
-
self.input_cols,
|
355
|
-
self.label_cols,
|
356
|
-
self.sample_weight_col,
|
357
|
-
)
|
358
|
-
|
359
355
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
360
356
|
if self._drop_input_cols:
|
361
357
|
return []
|
@@ -543,11 +539,6 @@ class RANSACRegressor(BaseTransformer):
|
|
543
539
|
subproject=_SUBPROJECT,
|
544
540
|
custom_tags=dict([("autogen", True)]),
|
545
541
|
)
|
546
|
-
@telemetry.add_stmt_params_to_df(
|
547
|
-
project=_PROJECT,
|
548
|
-
subproject=_SUBPROJECT,
|
549
|
-
custom_tags=dict([("autogen", True)]),
|
550
|
-
)
|
551
542
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
552
543
|
"""Predict using the estimated model
|
553
544
|
For more details on this function, see [sklearn.linear_model.RANSACRegressor.predict]
|
@@ -601,11 +592,6 @@ class RANSACRegressor(BaseTransformer):
|
|
601
592
|
subproject=_SUBPROJECT,
|
602
593
|
custom_tags=dict([("autogen", True)]),
|
603
594
|
)
|
604
|
-
@telemetry.add_stmt_params_to_df(
|
605
|
-
project=_PROJECT,
|
606
|
-
subproject=_SUBPROJECT,
|
607
|
-
custom_tags=dict([("autogen", True)]),
|
608
|
-
)
|
609
595
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
610
596
|
"""Method not supported for this class.
|
611
597
|
|
@@ -662,7 +648,8 @@ class RANSACRegressor(BaseTransformer):
|
|
662
648
|
if False:
|
663
649
|
self.fit(dataset)
|
664
650
|
assert self._sklearn_object is not None
|
665
|
-
|
651
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
652
|
+
return labels
|
666
653
|
else:
|
667
654
|
raise NotImplementedError
|
668
655
|
|
@@ -698,6 +685,7 @@ class RANSACRegressor(BaseTransformer):
|
|
698
685
|
output_cols = []
|
699
686
|
|
700
687
|
# Make sure column names are valid snowflake identifiers.
|
688
|
+
assert output_cols is not None # Make MyPy happy
|
701
689
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
702
690
|
|
703
691
|
return rv
|
@@ -708,11 +696,6 @@ class RANSACRegressor(BaseTransformer):
|
|
708
696
|
subproject=_SUBPROJECT,
|
709
697
|
custom_tags=dict([("autogen", True)]),
|
710
698
|
)
|
711
|
-
@telemetry.add_stmt_params_to_df(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
699
|
def predict_proba(
|
717
700
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
718
701
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -753,11 +736,6 @@ class RANSACRegressor(BaseTransformer):
|
|
753
736
|
subproject=_SUBPROJECT,
|
754
737
|
custom_tags=dict([("autogen", True)]),
|
755
738
|
)
|
756
|
-
@telemetry.add_stmt_params_to_df(
|
757
|
-
project=_PROJECT,
|
758
|
-
subproject=_SUBPROJECT,
|
759
|
-
custom_tags=dict([("autogen", True)]),
|
760
|
-
)
|
761
739
|
def predict_log_proba(
|
762
740
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
763
741
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -794,16 +772,6 @@ class RANSACRegressor(BaseTransformer):
|
|
794
772
|
return output_df
|
795
773
|
|
796
774
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
797
|
-
@telemetry.send_api_usage_telemetry(
|
798
|
-
project=_PROJECT,
|
799
|
-
subproject=_SUBPROJECT,
|
800
|
-
custom_tags=dict([("autogen", True)]),
|
801
|
-
)
|
802
|
-
@telemetry.add_stmt_params_to_df(
|
803
|
-
project=_PROJECT,
|
804
|
-
subproject=_SUBPROJECT,
|
805
|
-
custom_tags=dict([("autogen", True)]),
|
806
|
-
)
|
807
775
|
def decision_function(
|
808
776
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
809
777
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -904,11 +872,6 @@ class RANSACRegressor(BaseTransformer):
|
|
904
872
|
subproject=_SUBPROJECT,
|
905
873
|
custom_tags=dict([("autogen", True)]),
|
906
874
|
)
|
907
|
-
@telemetry.add_stmt_params_to_df(
|
908
|
-
project=_PROJECT,
|
909
|
-
subproject=_SUBPROJECT,
|
910
|
-
custom_tags=dict([("autogen", True)]),
|
911
|
-
)
|
912
875
|
def kneighbors(
|
913
876
|
self,
|
914
877
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -968,18 +931,28 @@ class RANSACRegressor(BaseTransformer):
|
|
968
931
|
# For classifier, the type of predict is the same as the type of label
|
969
932
|
if self._sklearn_object._estimator_type == 'classifier':
|
970
933
|
# label columns is the desired type for output
|
971
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
934
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
935
|
# rename the output columns
|
973
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
936
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
937
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
975
938
|
([] if self._drop_input_cols else inputs)
|
976
939
|
+ outputs)
|
940
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
941
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
942
|
+
# Clusterer returns int64 cluster labels.
|
943
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
944
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
945
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
946
|
+
([] if self._drop_input_cols else inputs)
|
947
|
+
+ outputs)
|
948
|
+
|
977
949
|
# For regressor, the type of predict is float64
|
978
950
|
elif self._sklearn_object._estimator_type == 'regressor':
|
979
951
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
980
952
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
981
953
|
([] if self._drop_input_cols else inputs)
|
982
954
|
+ outputs)
|
955
|
+
|
983
956
|
for prob_func in PROB_FUNCTIONS:
|
984
957
|
if hasattr(self, prob_func):
|
985
958
|
output_cols_prefix: str = f"{prob_func}_"
|