snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_ridge".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelRidge(BaseTransformer):
|
57
58
|
r"""Kernel ridge regression
|
58
59
|
For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
|
@@ -60,6 +61,51 @@ class KernelRidge(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float or array-like of shape (n_targets,), default=1.0
|
64
110
|
Regularization strength; must be a positive float. Regularization
|
65
111
|
improves the conditioning of the problem and reduces the variance of
|
@@ -100,35 +146,6 @@ class KernelRidge(BaseTransformer):
|
|
100
146
|
kernel_params: dict, default=None
|
101
147
|
Additional parameters (keyword arguments) for kernel function passed
|
102
148
|
as callable object.
|
103
|
-
|
104
|
-
input_cols: Optional[Union[str, List[str]]]
|
105
|
-
A string or list of strings representing column names that contain features.
|
106
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
107
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
108
|
-
considered input columns.
|
109
|
-
|
110
|
-
label_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain labels.
|
112
|
-
This is a required param for estimators, as there is no way to infer these
|
113
|
-
columns. If this parameter is not specified, then object is fitted without
|
114
|
-
labels (like a transformer).
|
115
|
-
|
116
|
-
output_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that will store the
|
118
|
-
output of predict and transform operations. The length of output_cols must
|
119
|
-
match the expected number of output columns from the specific estimator or
|
120
|
-
transformer class used.
|
121
|
-
If this parameter is not specified, output column names are derived by
|
122
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
123
|
-
column names work for estimator's predict() method, but output_cols must
|
124
|
-
be set explicitly for transformers.
|
125
|
-
|
126
|
-
sample_weight_col: Optional[str]
|
127
|
-
A string representing the column name containing the sample weights.
|
128
|
-
This argument is only required when working with weighted datasets.
|
129
|
-
|
130
|
-
drop_input_cols: Optional[bool], default=False
|
131
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
132
149
|
"""
|
133
150
|
|
134
151
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -143,6 +160,7 @@ class KernelRidge(BaseTransformer):
|
|
143
160
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
144
161
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
145
162
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
163
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
146
164
|
drop_input_cols: Optional[bool] = False,
|
147
165
|
sample_weight_col: Optional[str] = None,
|
148
166
|
) -> None:
|
@@ -151,9 +169,10 @@ class KernelRidge(BaseTransformer):
|
|
151
169
|
self.set_input_cols(input_cols)
|
152
170
|
self.set_output_cols(output_cols)
|
153
171
|
self.set_label_cols(label_cols)
|
172
|
+
self.set_passthrough_cols(passthrough_cols)
|
154
173
|
self.set_drop_input_cols(drop_input_cols)
|
155
174
|
self.set_sample_weight_col(sample_weight_col)
|
156
|
-
deps = set(
|
175
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
157
176
|
|
158
177
|
self._deps = list(deps)
|
159
178
|
|
@@ -167,13 +186,14 @@ class KernelRidge(BaseTransformer):
|
|
167
186
|
args=init_args,
|
168
187
|
klass=sklearn.kernel_ridge.KernelRidge
|
169
188
|
)
|
170
|
-
self._sklearn_object = sklearn.kernel_ridge.KernelRidge(
|
189
|
+
self._sklearn_object: Any = sklearn.kernel_ridge.KernelRidge(
|
171
190
|
**cleaned_up_init_args,
|
172
191
|
)
|
173
192
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
174
193
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
175
194
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
176
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
195
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
196
|
+
self._autogenerated = True
|
177
197
|
|
178
198
|
def _get_rand_id(self) -> str:
|
179
199
|
"""
|
@@ -184,24 +204,6 @@ class KernelRidge(BaseTransformer):
|
|
184
204
|
"""
|
185
205
|
return str(uuid4()).replace("-", "_").upper()
|
186
206
|
|
187
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
188
|
-
"""
|
189
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
190
|
-
|
191
|
-
Args:
|
192
|
-
dataset: Input dataset.
|
193
|
-
"""
|
194
|
-
if not self.input_cols:
|
195
|
-
cols = [
|
196
|
-
c for c in dataset.columns
|
197
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
198
|
-
]
|
199
|
-
self.set_input_cols(input_cols=cols)
|
200
|
-
|
201
|
-
if not self.output_cols:
|
202
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
203
|
-
self.set_output_cols(output_cols=cols)
|
204
|
-
|
205
207
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KernelRidge":
|
206
208
|
"""
|
207
209
|
Input columns setter.
|
@@ -247,54 +249,48 @@ class KernelRidge(BaseTransformer):
|
|
247
249
|
self
|
248
250
|
"""
|
249
251
|
self._infer_input_output_cols(dataset)
|
250
|
-
if isinstance(dataset,
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
self.
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
252
|
+
if isinstance(dataset, DataFrame):
|
253
|
+
session = dataset._session
|
254
|
+
assert session is not None # keep mypy happy
|
255
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
+
|
260
|
+
# Specify input columns so column pruning will be enforced
|
261
|
+
selected_cols = self._get_active_columns()
|
262
|
+
if len(selected_cols) > 0:
|
263
|
+
dataset = dataset.select(selected_cols)
|
264
|
+
|
265
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
+
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
|
+
if SNOWML_SPROC_ENV in os.environ:
|
269
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
270
|
+
project=_PROJECT,
|
271
|
+
subproject=_SUBPROJECT,
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelRidge.__class__.__name__),
|
273
|
+
api_calls=[Session.call],
|
274
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
|
+
)
|
276
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
|
+
pd_df.columns = dataset.columns
|
278
|
+
dataset = pd_df
|
279
|
+
|
280
|
+
model_trainer = ModelTrainerBuilder.build(
|
281
|
+
estimator=self._sklearn_object,
|
282
|
+
dataset=dataset,
|
283
|
+
input_cols=self.input_cols,
|
284
|
+
label_cols=self.label_cols,
|
285
|
+
sample_weight_col=self.sample_weight_col,
|
286
|
+
autogenerated=self._autogenerated,
|
287
|
+
subproject=_SUBPROJECT
|
288
|
+
)
|
289
|
+
self._sklearn_object = model_trainer.train()
|
266
290
|
self._is_fitted = True
|
267
291
|
self._get_model_signatures(dataset)
|
268
292
|
return self
|
269
293
|
|
270
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
271
|
-
session = dataset._session
|
272
|
-
assert session is not None # keep mypy happy
|
273
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
-
|
278
|
-
# Specify input columns so column pruning will be enforced
|
279
|
-
selected_cols = self._get_active_columns()
|
280
|
-
if len(selected_cols) > 0:
|
281
|
-
dataset = dataset.select(selected_cols)
|
282
|
-
|
283
|
-
estimator = self._sklearn_object
|
284
|
-
assert estimator is not None # Keep mypy happy
|
285
|
-
|
286
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
-
|
288
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
289
|
-
dataset,
|
290
|
-
session,
|
291
|
-
estimator,
|
292
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
293
|
-
self.input_cols,
|
294
|
-
self.label_cols,
|
295
|
-
self.sample_weight_col,
|
296
|
-
)
|
297
|
-
|
298
294
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
299
295
|
if self._drop_input_cols:
|
300
296
|
return []
|
@@ -482,11 +478,6 @@ class KernelRidge(BaseTransformer):
|
|
482
478
|
subproject=_SUBPROJECT,
|
483
479
|
custom_tags=dict([("autogen", True)]),
|
484
480
|
)
|
485
|
-
@telemetry.add_stmt_params_to_df(
|
486
|
-
project=_PROJECT,
|
487
|
-
subproject=_SUBPROJECT,
|
488
|
-
custom_tags=dict([("autogen", True)]),
|
489
|
-
)
|
490
481
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
491
482
|
"""Predict using the kernel ridge model
|
492
483
|
For more details on this function, see [sklearn.kernel_ridge.KernelRidge.predict]
|
@@ -540,11 +531,6 @@ class KernelRidge(BaseTransformer):
|
|
540
531
|
subproject=_SUBPROJECT,
|
541
532
|
custom_tags=dict([("autogen", True)]),
|
542
533
|
)
|
543
|
-
@telemetry.add_stmt_params_to_df(
|
544
|
-
project=_PROJECT,
|
545
|
-
subproject=_SUBPROJECT,
|
546
|
-
custom_tags=dict([("autogen", True)]),
|
547
|
-
)
|
548
534
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
549
535
|
"""Method not supported for this class.
|
550
536
|
|
@@ -601,7 +587,8 @@ class KernelRidge(BaseTransformer):
|
|
601
587
|
if False:
|
602
588
|
self.fit(dataset)
|
603
589
|
assert self._sklearn_object is not None
|
604
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
605
592
|
else:
|
606
593
|
raise NotImplementedError
|
607
594
|
|
@@ -637,6 +624,7 @@ class KernelRidge(BaseTransformer):
|
|
637
624
|
output_cols = []
|
638
625
|
|
639
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
640
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
641
629
|
|
642
630
|
return rv
|
@@ -647,11 +635,6 @@ class KernelRidge(BaseTransformer):
|
|
647
635
|
subproject=_SUBPROJECT,
|
648
636
|
custom_tags=dict([("autogen", True)]),
|
649
637
|
)
|
650
|
-
@telemetry.add_stmt_params_to_df(
|
651
|
-
project=_PROJECT,
|
652
|
-
subproject=_SUBPROJECT,
|
653
|
-
custom_tags=dict([("autogen", True)]),
|
654
|
-
)
|
655
638
|
def predict_proba(
|
656
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
657
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -692,11 +675,6 @@ class KernelRidge(BaseTransformer):
|
|
692
675
|
subproject=_SUBPROJECT,
|
693
676
|
custom_tags=dict([("autogen", True)]),
|
694
677
|
)
|
695
|
-
@telemetry.add_stmt_params_to_df(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
678
|
def predict_log_proba(
|
701
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
702
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -733,16 +711,6 @@ class KernelRidge(BaseTransformer):
|
|
733
711
|
return output_df
|
734
712
|
|
735
713
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
736
|
-
@telemetry.send_api_usage_telemetry(
|
737
|
-
project=_PROJECT,
|
738
|
-
subproject=_SUBPROJECT,
|
739
|
-
custom_tags=dict([("autogen", True)]),
|
740
|
-
)
|
741
|
-
@telemetry.add_stmt_params_to_df(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
714
|
def decision_function(
|
747
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
748
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,11 +811,6 @@ class KernelRidge(BaseTransformer):
|
|
843
811
|
subproject=_SUBPROJECT,
|
844
812
|
custom_tags=dict([("autogen", True)]),
|
845
813
|
)
|
846
|
-
@telemetry.add_stmt_params_to_df(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
814
|
def kneighbors(
|
852
815
|
self,
|
853
816
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -907,18 +870,28 @@ class KernelRidge(BaseTransformer):
|
|
907
870
|
# For classifier, the type of predict is the same as the type of label
|
908
871
|
if self._sklearn_object._estimator_type == 'classifier':
|
909
872
|
# label columns is the desired type for output
|
910
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
873
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
911
874
|
# rename the output columns
|
912
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
875
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
913
876
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
914
877
|
([] if self._drop_input_cols else inputs)
|
915
878
|
+ outputs)
|
879
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
880
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
881
|
+
# Clusterer returns int64 cluster labels.
|
882
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
883
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
884
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
885
|
+
([] if self._drop_input_cols else inputs)
|
886
|
+
+ outputs)
|
887
|
+
|
916
888
|
# For regressor, the type of predict is float64
|
917
889
|
elif self._sklearn_object._estimator_type == 'regressor':
|
918
890
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
919
891
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
892
|
([] if self._drop_input_cols else inputs)
|
921
893
|
+ outputs)
|
894
|
+
|
922
895
|
for prob_func in PROB_FUNCTIONS:
|
923
896
|
if hasattr(self, prob_func):
|
924
897
|
output_cols_prefix: str = f"{prob_func}_"
|