snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.preprocessing".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PolynomialFeatures(BaseTransformer):
|
57
58
|
r"""Generate polynomial and interaction features
|
58
59
|
For more details on this class, see [sklearn.preprocessing.PolynomialFeatures]
|
@@ -60,6 +61,49 @@ class PolynomialFeatures(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
degree: int or tuple (min_degree, max_degree), default=2
|
64
108
|
If a single int is given, it specifies the maximal degree of the
|
65
109
|
polynomial features. If a tuple `(min_degree, max_degree)` is passed,
|
@@ -84,35 +128,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
84
128
|
order: {'C', 'F'}, default='C'
|
85
129
|
Order of output array in the dense case. `'F'` order is faster to
|
86
130
|
compute, but may slow down subsequent estimators.
|
87
|
-
|
88
|
-
input_cols: Optional[Union[str, List[str]]]
|
89
|
-
A string or list of strings representing column names that contain features.
|
90
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
91
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
92
|
-
considered input columns.
|
93
|
-
|
94
|
-
label_cols: Optional[Union[str, List[str]]]
|
95
|
-
A string or list of strings representing column names that contain labels.
|
96
|
-
This is a required param for estimators, as there is no way to infer these
|
97
|
-
columns. If this parameter is not specified, then object is fitted without
|
98
|
-
labels (like a transformer).
|
99
|
-
|
100
|
-
output_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that will store the
|
102
|
-
output of predict and transform operations. The length of output_cols must
|
103
|
-
match the expected number of output columns from the specific estimator or
|
104
|
-
transformer class used.
|
105
|
-
If this parameter is not specified, output column names are derived by
|
106
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
107
|
-
column names work for estimator's predict() method, but output_cols must
|
108
|
-
be set explicitly for transformers.
|
109
|
-
|
110
|
-
sample_weight_col: Optional[str]
|
111
|
-
A string representing the column name containing the sample weights.
|
112
|
-
This argument is only required when working with weighted datasets.
|
113
|
-
|
114
|
-
drop_input_cols: Optional[bool], default=False
|
115
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
116
131
|
"""
|
117
132
|
|
118
133
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -125,6 +140,7 @@ class PolynomialFeatures(BaseTransformer):
|
|
125
140
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
126
141
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
127
142
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
143
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
128
144
|
drop_input_cols: Optional[bool] = False,
|
129
145
|
sample_weight_col: Optional[str] = None,
|
130
146
|
) -> None:
|
@@ -133,9 +149,10 @@ class PolynomialFeatures(BaseTransformer):
|
|
133
149
|
self.set_input_cols(input_cols)
|
134
150
|
self.set_output_cols(output_cols)
|
135
151
|
self.set_label_cols(label_cols)
|
152
|
+
self.set_passthrough_cols(passthrough_cols)
|
136
153
|
self.set_drop_input_cols(drop_input_cols)
|
137
154
|
self.set_sample_weight_col(sample_weight_col)
|
138
|
-
deps = set(
|
155
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
139
156
|
|
140
157
|
self._deps = list(deps)
|
141
158
|
|
@@ -147,13 +164,14 @@ class PolynomialFeatures(BaseTransformer):
|
|
147
164
|
args=init_args,
|
148
165
|
klass=sklearn.preprocessing.PolynomialFeatures
|
149
166
|
)
|
150
|
-
self._sklearn_object = sklearn.preprocessing.PolynomialFeatures(
|
167
|
+
self._sklearn_object: Any = sklearn.preprocessing.PolynomialFeatures(
|
151
168
|
**cleaned_up_init_args,
|
152
169
|
)
|
153
170
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
154
171
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
155
172
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
156
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
173
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
174
|
+
self._autogenerated = True
|
157
175
|
|
158
176
|
def _get_rand_id(self) -> str:
|
159
177
|
"""
|
@@ -164,24 +182,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
164
182
|
"""
|
165
183
|
return str(uuid4()).replace("-", "_").upper()
|
166
184
|
|
167
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
168
|
-
"""
|
169
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
170
|
-
|
171
|
-
Args:
|
172
|
-
dataset: Input dataset.
|
173
|
-
"""
|
174
|
-
if not self.input_cols:
|
175
|
-
cols = [
|
176
|
-
c for c in dataset.columns
|
177
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
178
|
-
]
|
179
|
-
self.set_input_cols(input_cols=cols)
|
180
|
-
|
181
|
-
if not self.output_cols:
|
182
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
183
|
-
self.set_output_cols(output_cols=cols)
|
184
|
-
|
185
185
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PolynomialFeatures":
|
186
186
|
"""
|
187
187
|
Input columns setter.
|
@@ -227,54 +227,48 @@ class PolynomialFeatures(BaseTransformer):
|
|
227
227
|
self
|
228
228
|
"""
|
229
229
|
self._infer_input_output_cols(dataset)
|
230
|
-
if isinstance(dataset,
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
self.
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
230
|
+
if isinstance(dataset, DataFrame):
|
231
|
+
session = dataset._session
|
232
|
+
assert session is not None # keep mypy happy
|
233
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
+
|
238
|
+
# Specify input columns so column pruning will be enforced
|
239
|
+
selected_cols = self._get_active_columns()
|
240
|
+
if len(selected_cols) > 0:
|
241
|
+
dataset = dataset.select(selected_cols)
|
242
|
+
|
243
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
+
|
245
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
|
+
if SNOWML_SPROC_ENV in os.environ:
|
247
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
248
|
+
project=_PROJECT,
|
249
|
+
subproject=_SUBPROJECT,
|
250
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialFeatures.__class__.__name__),
|
251
|
+
api_calls=[Session.call],
|
252
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
|
+
)
|
254
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
255
|
+
pd_df.columns = dataset.columns
|
256
|
+
dataset = pd_df
|
257
|
+
|
258
|
+
model_trainer = ModelTrainerBuilder.build(
|
259
|
+
estimator=self._sklearn_object,
|
260
|
+
dataset=dataset,
|
261
|
+
input_cols=self.input_cols,
|
262
|
+
label_cols=self.label_cols,
|
263
|
+
sample_weight_col=self.sample_weight_col,
|
264
|
+
autogenerated=self._autogenerated,
|
265
|
+
subproject=_SUBPROJECT
|
266
|
+
)
|
267
|
+
self._sklearn_object = model_trainer.train()
|
246
268
|
self._is_fitted = True
|
247
269
|
self._get_model_signatures(dataset)
|
248
270
|
return self
|
249
271
|
|
250
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
251
|
-
session = dataset._session
|
252
|
-
assert session is not None # keep mypy happy
|
253
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
254
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
255
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
256
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
257
|
-
|
258
|
-
# Specify input columns so column pruning will be enforced
|
259
|
-
selected_cols = self._get_active_columns()
|
260
|
-
if len(selected_cols) > 0:
|
261
|
-
dataset = dataset.select(selected_cols)
|
262
|
-
|
263
|
-
estimator = self._sklearn_object
|
264
|
-
assert estimator is not None # Keep mypy happy
|
265
|
-
|
266
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
267
|
-
|
268
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
269
|
-
dataset,
|
270
|
-
session,
|
271
|
-
estimator,
|
272
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
273
|
-
self.input_cols,
|
274
|
-
self.label_cols,
|
275
|
-
self.sample_weight_col,
|
276
|
-
)
|
277
|
-
|
278
272
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
279
273
|
if self._drop_input_cols:
|
280
274
|
return []
|
@@ -462,11 +456,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
462
456
|
subproject=_SUBPROJECT,
|
463
457
|
custom_tags=dict([("autogen", True)]),
|
464
458
|
)
|
465
|
-
@telemetry.add_stmt_params_to_df(
|
466
|
-
project=_PROJECT,
|
467
|
-
subproject=_SUBPROJECT,
|
468
|
-
custom_tags=dict([("autogen", True)]),
|
469
|
-
)
|
470
459
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
471
460
|
"""Method not supported for this class.
|
472
461
|
|
@@ -518,11 +507,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
518
507
|
subproject=_SUBPROJECT,
|
519
508
|
custom_tags=dict([("autogen", True)]),
|
520
509
|
)
|
521
|
-
@telemetry.add_stmt_params_to_df(
|
522
|
-
project=_PROJECT,
|
523
|
-
subproject=_SUBPROJECT,
|
524
|
-
custom_tags=dict([("autogen", True)]),
|
525
|
-
)
|
526
510
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
527
511
|
"""Transform data to polynomial features
|
528
512
|
For more details on this function, see [sklearn.preprocessing.PolynomialFeatures.transform]
|
@@ -581,7 +565,8 @@ class PolynomialFeatures(BaseTransformer):
|
|
581
565
|
if False:
|
582
566
|
self.fit(dataset)
|
583
567
|
assert self._sklearn_object is not None
|
584
|
-
|
568
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
569
|
+
return labels
|
585
570
|
else:
|
586
571
|
raise NotImplementedError
|
587
572
|
|
@@ -617,6 +602,7 @@ class PolynomialFeatures(BaseTransformer):
|
|
617
602
|
output_cols = []
|
618
603
|
|
619
604
|
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
620
606
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
621
607
|
|
622
608
|
return rv
|
@@ -627,11 +613,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
627
613
|
subproject=_SUBPROJECT,
|
628
614
|
custom_tags=dict([("autogen", True)]),
|
629
615
|
)
|
630
|
-
@telemetry.add_stmt_params_to_df(
|
631
|
-
project=_PROJECT,
|
632
|
-
subproject=_SUBPROJECT,
|
633
|
-
custom_tags=dict([("autogen", True)]),
|
634
|
-
)
|
635
616
|
def predict_proba(
|
636
617
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
637
618
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -672,11 +653,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
672
653
|
subproject=_SUBPROJECT,
|
673
654
|
custom_tags=dict([("autogen", True)]),
|
674
655
|
)
|
675
|
-
@telemetry.add_stmt_params_to_df(
|
676
|
-
project=_PROJECT,
|
677
|
-
subproject=_SUBPROJECT,
|
678
|
-
custom_tags=dict([("autogen", True)]),
|
679
|
-
)
|
680
656
|
def predict_log_proba(
|
681
657
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
682
658
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -713,16 +689,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
713
689
|
return output_df
|
714
690
|
|
715
691
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
716
|
-
@telemetry.send_api_usage_telemetry(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
|
-
@telemetry.add_stmt_params_to_df(
|
722
|
-
project=_PROJECT,
|
723
|
-
subproject=_SUBPROJECT,
|
724
|
-
custom_tags=dict([("autogen", True)]),
|
725
|
-
)
|
726
692
|
def decision_function(
|
727
693
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
728
694
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -821,11 +787,6 @@ class PolynomialFeatures(BaseTransformer):
|
|
821
787
|
subproject=_SUBPROJECT,
|
822
788
|
custom_tags=dict([("autogen", True)]),
|
823
789
|
)
|
824
|
-
@telemetry.add_stmt_params_to_df(
|
825
|
-
project=_PROJECT,
|
826
|
-
subproject=_SUBPROJECT,
|
827
|
-
custom_tags=dict([("autogen", True)]),
|
828
|
-
)
|
829
790
|
def kneighbors(
|
830
791
|
self,
|
831
792
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -885,18 +846,28 @@ class PolynomialFeatures(BaseTransformer):
|
|
885
846
|
# For classifier, the type of predict is the same as the type of label
|
886
847
|
if self._sklearn_object._estimator_type == 'classifier':
|
887
848
|
# label columns is the desired type for output
|
888
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
849
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
889
850
|
# rename the output columns
|
890
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
851
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
852
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
853
|
+
([] if self._drop_input_cols else inputs)
|
854
|
+
+ outputs)
|
855
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
856
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
857
|
+
# Clusterer returns int64 cluster labels.
|
858
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
859
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
891
860
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
892
861
|
([] if self._drop_input_cols else inputs)
|
893
862
|
+ outputs)
|
863
|
+
|
894
864
|
# For regressor, the type of predict is float64
|
895
865
|
elif self._sklearn_object._estimator_type == 'regressor':
|
896
866
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
897
867
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
898
868
|
([] if self._drop_input_cols else inputs)
|
899
869
|
+ outputs)
|
870
|
+
|
900
871
|
for prob_func in PROB_FUNCTIONS:
|
901
872
|
if hasattr(self, prob_func):
|
902
873
|
output_cols_prefix: str = f"{prob_func}_"
|
@@ -20,23 +20,46 @@ class RobustScaler(base.BaseTransformer):
|
|
20
20
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html).
|
21
21
|
|
22
22
|
Args:
|
23
|
-
with_centering:
|
24
|
-
|
25
|
-
|
23
|
+
with_centering: bool, default=True
|
24
|
+
If True, center the data around zero before scaling.
|
25
|
+
|
26
|
+
with_scaling: bool, default=True
|
27
|
+
If True, scale the data to interquartile range.
|
28
|
+
|
29
|
+
quantile_range: Tuple[float, float], default=(25.0, 75.0)
|
30
|
+
tuple like (q_min, q_max), where 0.0 < q_min < q_max < 100.0, default=(25.0, 75.0). Quantile
|
26
31
|
range used to calculate scale_. By default, this is equal to the IQR, i.e., q_min is the first quantile and
|
27
32
|
q_max is the third quantile.
|
28
|
-
|
33
|
+
|
34
|
+
unit_variance: bool, default=False
|
35
|
+
If True, scale data so that normally-distributed features have a variance of 1. In general, if
|
29
36
|
the difference between the x-values of q_max and q_min for a standard normal distribution is greater than 1,
|
30
37
|
the dataset is scaled down. If less than 1, the dataset is scaled up.
|
31
|
-
|
32
|
-
|
38
|
+
|
39
|
+
input_cols: Optional[Union[str, List[str]]], default=None
|
40
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
|
41
|
+
|
42
|
+
output_cols: Optional[Union[str, List[str]]], default=None
|
43
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
33
44
|
columns specified must match the number of input columns. For dense output, the column names specified are
|
34
45
|
used as base names for the columns created for each category.
|
35
|
-
|
46
|
+
|
47
|
+
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
48
|
+
A string or a list of strings indicating column names to be excluded from any
|
49
|
+
operations (such as train, transform, or inference). These specified column(s)
|
50
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
51
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
52
|
+
columns, like index columns, during training or inference.
|
53
|
+
|
54
|
+
drop_input_cols: Optional[bool], default=False
|
55
|
+
Remove input columns from output if set True. False by default.
|
36
56
|
|
37
57
|
Attributes:
|
38
|
-
center_:
|
39
|
-
|
58
|
+
center_: Dict[str, float]
|
59
|
+
Dictionary mapping input column name to the median value for that feature.
|
60
|
+
|
61
|
+
scale_: Dict[str, float]
|
62
|
+
Dictionary mapping input column name to the (scaled) interquartile range for that feature.
|
40
63
|
"""
|
41
64
|
|
42
65
|
def __init__(
|
@@ -48,6 +71,7 @@ class RobustScaler(base.BaseTransformer):
|
|
48
71
|
unit_variance: bool = False,
|
49
72
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
50
73
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
74
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
51
75
|
drop_input_cols: Optional[bool] = False,
|
52
76
|
) -> None:
|
53
77
|
"""
|
@@ -68,6 +92,11 @@ class RobustScaler(base.BaseTransformer):
|
|
68
92
|
If less than 1, the dataset will be scaled up.
|
69
93
|
input_cols: Single or multiple input columns.
|
70
94
|
output_cols: Single or multiple output columns.
|
95
|
+
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
96
|
+
operations (such as train, transform, or inference). These specified column(s)
|
97
|
+
will remain untouched throughout the process. This option is helful in scenarios
|
98
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
99
|
+
columns, like index columns, during in training or inference.
|
71
100
|
drop_input_cols: Remove input columns from output if set True. False by default.
|
72
101
|
|
73
102
|
Attributes:
|
@@ -95,6 +124,7 @@ class RobustScaler(base.BaseTransformer):
|
|
95
124
|
|
96
125
|
self.set_input_cols(input_cols)
|
97
126
|
self.set_output_cols(output_cols)
|
127
|
+
self.set_passthrough_cols(passthrough_cols)
|
98
128
|
|
99
129
|
def _reset(self) -> None:
|
100
130
|
"""
|
@@ -187,10 +217,6 @@ class RobustScaler(base.BaseTransformer):
|
|
187
217
|
project=base.PROJECT,
|
188
218
|
subproject=base.SUBPROJECT,
|
189
219
|
)
|
190
|
-
@telemetry.add_stmt_params_to_df(
|
191
|
-
project=base.PROJECT,
|
192
|
-
subproject=base.SUBPROJECT,
|
193
|
-
)
|
194
220
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
195
221
|
"""
|
196
222
|
Center and scale the data.
|
@@ -19,19 +19,40 @@ class StandardScaler(base.BaseTransformer):
|
|
19
19
|
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html).
|
20
20
|
|
21
21
|
Args:
|
22
|
-
with_mean:
|
23
|
-
|
24
|
-
|
25
|
-
|
22
|
+
with_mean: bool, default=True
|
23
|
+
If True, center the data before scaling.
|
24
|
+
|
25
|
+
with_std: bool, default=True
|
26
|
+
If True, scale the data unit variance (i.e. unit standard deviation).
|
27
|
+
|
28
|
+
input_cols: Optional[Union[str, List[str]]], default=None
|
29
|
+
The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
|
30
|
+
|
31
|
+
output_cols: Optional[Union[str, List[str]]], default=None
|
32
|
+
The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
|
26
33
|
columns specified must match the number of input columns.
|
27
|
-
|
34
|
+
|
35
|
+
passthrough_cols: Optional[Union[str, List[str]]], default=None
|
36
|
+
A string or a list of strings indicating column names to be excluded from any
|
37
|
+
operations (such as train, transform, or inference). These specified column(s)
|
38
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
39
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
40
|
+
columns, like index columns, during training or inference.
|
41
|
+
|
42
|
+
drop_input_cols: Optional[bool], default=False
|
43
|
+
Remove input columns from output if set True. False by default.
|
28
44
|
|
29
45
|
Attributes:
|
30
|
-
scale_:
|
46
|
+
scale_: Optional[Dict[str, float]] = {}
|
47
|
+
Dictionary mapping input column names to relative scaling factor to achieve zero mean and unit variance.
|
31
48
|
If a variance is zero, unit variance could not be achieved, and the data is left as-is, giving a scaling
|
32
49
|
factor of 1. None if with_std is False.
|
33
|
-
|
34
|
-
|
50
|
+
|
51
|
+
mean_: Optional[Dict[str, float]] = {}
|
52
|
+
Dictionary mapping input column name to the mean value for that feature. None if with_mean is False.
|
53
|
+
|
54
|
+
var_: Optional[Dict[str, float]] = {}
|
55
|
+
Dictionary mapping input column name to the variance for that feature. Used to compute scale_. None if
|
35
56
|
with_std is False
|
36
57
|
"""
|
37
58
|
|
@@ -42,6 +63,7 @@ class StandardScaler(base.BaseTransformer):
|
|
42
63
|
with_std: bool = True,
|
43
64
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
44
65
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
66
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
45
67
|
drop_input_cols: Optional[bool] = False,
|
46
68
|
) -> None:
|
47
69
|
"""
|
@@ -57,6 +79,11 @@ class StandardScaler(base.BaseTransformer):
|
|
57
79
|
unit standard deviation).
|
58
80
|
input_cols: Single or multiple input columns.
|
59
81
|
output_cols: Single or multiple output columns.
|
82
|
+
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
83
|
+
operations (such as train, transform, or inference). These specified column(s)
|
84
|
+
will remain untouched throughout the process. This option is helful in scenarios
|
85
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
86
|
+
columns, like index columns, during in training or inference.
|
60
87
|
drop_input_cols: Remove input columns from output if set True. False by default.
|
61
88
|
|
62
89
|
Attributes:
|
@@ -90,6 +117,7 @@ class StandardScaler(base.BaseTransformer):
|
|
90
117
|
|
91
118
|
self.set_input_cols(input_cols)
|
92
119
|
self.set_output_cols(output_cols)
|
120
|
+
self.set_passthrough_cols(passthrough_cols)
|
93
121
|
|
94
122
|
def _reset(self) -> None:
|
95
123
|
"""
|
@@ -165,10 +193,6 @@ class StandardScaler(base.BaseTransformer):
|
|
165
193
|
project=base.PROJECT,
|
166
194
|
subproject=base.SUBPROJECT,
|
167
195
|
)
|
168
|
-
@telemetry.add_stmt_params_to_df(
|
169
|
-
project=base.PROJECT,
|
170
|
-
subproject=base.SUBPROJECT,
|
171
|
-
)
|
172
196
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
173
197
|
"""
|
174
198
|
Perform standardization by centering and scaling.
|