snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class DictionaryLearning(BaseTransformer):
57
58
  r"""Dictionary learning
58
59
  For more details on this class, see [sklearn.decomposition.DictionaryLearning]
@@ -60,6 +61,49 @@ class DictionaryLearning(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Number of dictionary elements to extract. If None, then ``n_components``
65
109
  is set to ``n_features``.
@@ -148,35 +192,6 @@ class DictionaryLearning(BaseTransformer):
148
192
  transform_max_iter: int, default=1000
149
193
  Maximum number of iterations to perform if `algorithm='lasso_cd'` or
150
194
  `'lasso_lars'`.
151
-
152
- input_cols: Optional[Union[str, List[str]]]
153
- A string or list of strings representing column names that contain features.
154
- If this parameter is not specified, all columns in the input DataFrame except
155
- the columns specified by label_cols and sample_weight_col parameters are
156
- considered input columns.
157
-
158
- label_cols: Optional[Union[str, List[str]]]
159
- A string or list of strings representing column names that contain labels.
160
- This is a required param for estimators, as there is no way to infer these
161
- columns. If this parameter is not specified, then object is fitted without
162
- labels (like a transformer).
163
-
164
- output_cols: Optional[Union[str, List[str]]]
165
- A string or list of strings representing column names that will store the
166
- output of predict and transform operations. The length of output_cols must
167
- match the expected number of output columns from the specific estimator or
168
- transformer class used.
169
- If this parameter is not specified, output column names are derived by
170
- adding an OUTPUT_ prefix to the label column names. These inferred output
171
- column names work for estimator's predict() method, but output_cols must
172
- be set explicitly for transformers.
173
-
174
- sample_weight_col: Optional[str]
175
- A string representing the column name containing the sample weights.
176
- This argument is only required when working with weighted datasets.
177
-
178
- drop_input_cols: Optional[bool], default=False
179
- If set, the response of predict(), transform() methods will not contain input columns.
180
195
  """
181
196
 
182
197
  def __init__( # type: ignore[no-untyped-def]
@@ -203,6 +218,7 @@ class DictionaryLearning(BaseTransformer):
203
218
  input_cols: Optional[Union[str, Iterable[str]]] = None,
204
219
  output_cols: Optional[Union[str, Iterable[str]]] = None,
205
220
  label_cols: Optional[Union[str, Iterable[str]]] = None,
221
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
206
222
  drop_input_cols: Optional[bool] = False,
207
223
  sample_weight_col: Optional[str] = None,
208
224
  ) -> None:
@@ -211,9 +227,10 @@ class DictionaryLearning(BaseTransformer):
211
227
  self.set_input_cols(input_cols)
212
228
  self.set_output_cols(output_cols)
213
229
  self.set_label_cols(label_cols)
230
+ self.set_passthrough_cols(passthrough_cols)
214
231
  self.set_drop_input_cols(drop_input_cols)
215
232
  self.set_sample_weight_col(sample_weight_col)
216
- deps = set(SklearnWrapperProvider().dependencies)
233
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
217
234
 
218
235
  self._deps = list(deps)
219
236
 
@@ -239,13 +256,14 @@ class DictionaryLearning(BaseTransformer):
239
256
  args=init_args,
240
257
  klass=sklearn.decomposition.DictionaryLearning
241
258
  )
242
- self._sklearn_object = sklearn.decomposition.DictionaryLearning(
259
+ self._sklearn_object: Any = sklearn.decomposition.DictionaryLearning(
243
260
  **cleaned_up_init_args,
244
261
  )
245
262
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
246
263
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
247
264
  self._snowpark_cols: Optional[List[str]] = self.input_cols
248
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
265
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
266
+ self._autogenerated = True
249
267
 
250
268
  def _get_rand_id(self) -> str:
251
269
  """
@@ -256,24 +274,6 @@ class DictionaryLearning(BaseTransformer):
256
274
  """
257
275
  return str(uuid4()).replace("-", "_").upper()
258
276
 
259
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
260
- """
261
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
262
-
263
- Args:
264
- dataset: Input dataset.
265
- """
266
- if not self.input_cols:
267
- cols = [
268
- c for c in dataset.columns
269
- if c not in self.get_label_cols() and c != self.sample_weight_col
270
- ]
271
- self.set_input_cols(input_cols=cols)
272
-
273
- if not self.output_cols:
274
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
275
- self.set_output_cols(output_cols=cols)
276
-
277
277
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "DictionaryLearning":
278
278
  """
279
279
  Input columns setter.
@@ -319,54 +319,48 @@ class DictionaryLearning(BaseTransformer):
319
319
  self
320
320
  """
321
321
  self._infer_input_output_cols(dataset)
322
- if isinstance(dataset, pd.DataFrame):
323
- assert self._sklearn_object is not None # keep mypy happy
324
- self._sklearn_object = self._handlers.fit_pandas(
325
- dataset,
326
- self._sklearn_object,
327
- self.input_cols,
328
- self.label_cols,
329
- self.sample_weight_col
330
- )
331
- elif isinstance(dataset, DataFrame):
332
- self._fit_snowpark(dataset)
333
- else:
334
- raise TypeError(
335
- f"Unexpected dataset type: {type(dataset)}."
336
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
337
- )
322
+ if isinstance(dataset, DataFrame):
323
+ session = dataset._session
324
+ assert session is not None # keep mypy happy
325
+ # Validate that key package version in user workspace are supported in snowflake conda channel
326
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
327
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
328
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
329
+
330
+ # Specify input columns so column pruning will be enforced
331
+ selected_cols = self._get_active_columns()
332
+ if len(selected_cols) > 0:
333
+ dataset = dataset.select(selected_cols)
334
+
335
+ self._snowpark_cols = dataset.select(self.input_cols).columns
336
+
337
+ # If we are already in a stored procedure, no need to kick off another one.
338
+ if SNOWML_SPROC_ENV in os.environ:
339
+ statement_params = telemetry.get_function_usage_statement_params(
340
+ project=_PROJECT,
341
+ subproject=_SUBPROJECT,
342
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DictionaryLearning.__class__.__name__),
343
+ api_calls=[Session.call],
344
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
345
+ )
346
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
347
+ pd_df.columns = dataset.columns
348
+ dataset = pd_df
349
+
350
+ model_trainer = ModelTrainerBuilder.build(
351
+ estimator=self._sklearn_object,
352
+ dataset=dataset,
353
+ input_cols=self.input_cols,
354
+ label_cols=self.label_cols,
355
+ sample_weight_col=self.sample_weight_col,
356
+ autogenerated=self._autogenerated,
357
+ subproject=_SUBPROJECT
358
+ )
359
+ self._sklearn_object = model_trainer.train()
338
360
  self._is_fitted = True
339
361
  self._get_model_signatures(dataset)
340
362
  return self
341
363
 
342
- def _fit_snowpark(self, dataset: DataFrame) -> None:
343
- session = dataset._session
344
- assert session is not None # keep mypy happy
345
- # Validate that key package version in user workspace are supported in snowflake conda channel
346
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
347
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
348
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
349
-
350
- # Specify input columns so column pruning will be enforced
351
- selected_cols = self._get_active_columns()
352
- if len(selected_cols) > 0:
353
- dataset = dataset.select(selected_cols)
354
-
355
- estimator = self._sklearn_object
356
- assert estimator is not None # Keep mypy happy
357
-
358
- self._snowpark_cols = dataset.select(self.input_cols).columns
359
-
360
- self._sklearn_object = self._handlers.fit_snowpark(
361
- dataset,
362
- session,
363
- estimator,
364
- ["snowflake-snowpark-python"] + self._get_dependencies(),
365
- self.input_cols,
366
- self.label_cols,
367
- self.sample_weight_col,
368
- )
369
-
370
364
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
371
365
  if self._drop_input_cols:
372
366
  return []
@@ -554,11 +548,6 @@ class DictionaryLearning(BaseTransformer):
554
548
  subproject=_SUBPROJECT,
555
549
  custom_tags=dict([("autogen", True)]),
556
550
  )
557
- @telemetry.add_stmt_params_to_df(
558
- project=_PROJECT,
559
- subproject=_SUBPROJECT,
560
- custom_tags=dict([("autogen", True)]),
561
- )
562
551
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
563
552
  """Method not supported for this class.
564
553
 
@@ -610,11 +599,6 @@ class DictionaryLearning(BaseTransformer):
610
599
  subproject=_SUBPROJECT,
611
600
  custom_tags=dict([("autogen", True)]),
612
601
  )
613
- @telemetry.add_stmt_params_to_df(
614
- project=_PROJECT,
615
- subproject=_SUBPROJECT,
616
- custom_tags=dict([("autogen", True)]),
617
- )
618
602
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
619
603
  """Encode the data as a sparse combination of the dictionary atoms
620
604
  For more details on this function, see [sklearn.decomposition.DictionaryLearning.transform]
@@ -673,7 +657,8 @@ class DictionaryLearning(BaseTransformer):
673
657
  if False:
674
658
  self.fit(dataset)
675
659
  assert self._sklearn_object is not None
676
- return self._sklearn_object.labels_
660
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
661
+ return labels
677
662
  else:
678
663
  raise NotImplementedError
679
664
 
@@ -709,6 +694,7 @@ class DictionaryLearning(BaseTransformer):
709
694
  output_cols = []
710
695
 
711
696
  # Make sure column names are valid snowflake identifiers.
697
+ assert output_cols is not None # Make MyPy happy
712
698
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
713
699
 
714
700
  return rv
@@ -719,11 +705,6 @@ class DictionaryLearning(BaseTransformer):
719
705
  subproject=_SUBPROJECT,
720
706
  custom_tags=dict([("autogen", True)]),
721
707
  )
722
- @telemetry.add_stmt_params_to_df(
723
- project=_PROJECT,
724
- subproject=_SUBPROJECT,
725
- custom_tags=dict([("autogen", True)]),
726
- )
727
708
  def predict_proba(
728
709
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
729
710
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -764,11 +745,6 @@ class DictionaryLearning(BaseTransformer):
764
745
  subproject=_SUBPROJECT,
765
746
  custom_tags=dict([("autogen", True)]),
766
747
  )
767
- @telemetry.add_stmt_params_to_df(
768
- project=_PROJECT,
769
- subproject=_SUBPROJECT,
770
- custom_tags=dict([("autogen", True)]),
771
- )
772
748
  def predict_log_proba(
773
749
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
774
750
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -805,16 +781,6 @@ class DictionaryLearning(BaseTransformer):
805
781
  return output_df
806
782
 
807
783
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
808
- @telemetry.send_api_usage_telemetry(
809
- project=_PROJECT,
810
- subproject=_SUBPROJECT,
811
- custom_tags=dict([("autogen", True)]),
812
- )
813
- @telemetry.add_stmt_params_to_df(
814
- project=_PROJECT,
815
- subproject=_SUBPROJECT,
816
- custom_tags=dict([("autogen", True)]),
817
- )
818
784
  def decision_function(
819
785
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
820
786
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -913,11 +879,6 @@ class DictionaryLearning(BaseTransformer):
913
879
  subproject=_SUBPROJECT,
914
880
  custom_tags=dict([("autogen", True)]),
915
881
  )
916
- @telemetry.add_stmt_params_to_df(
917
- project=_PROJECT,
918
- subproject=_SUBPROJECT,
919
- custom_tags=dict([("autogen", True)]),
920
- )
921
882
  def kneighbors(
922
883
  self,
923
884
  dataset: Union[DataFrame, pd.DataFrame],
@@ -977,18 +938,28 @@ class DictionaryLearning(BaseTransformer):
977
938
  # For classifier, the type of predict is the same as the type of label
978
939
  if self._sklearn_object._estimator_type == 'classifier':
979
940
  # label columns is the desired type for output
980
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
941
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
942
  # rename the output columns
982
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
943
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
944
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
945
+ ([] if self._drop_input_cols else inputs)
946
+ + outputs)
947
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
948
+ # For outlier models, returns -1 for outliers and 1 for inliers.
949
+ # Clusterer returns int64 cluster labels.
950
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
951
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
983
952
  self._model_signature_dict["predict"] = ModelSignature(inputs,
984
953
  ([] if self._drop_input_cols else inputs)
985
954
  + outputs)
955
+
986
956
  # For regressor, the type of predict is float64
987
957
  elif self._sklearn_object._estimator_type == 'regressor':
988
958
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
989
959
  self._model_signature_dict["predict"] = ModelSignature(inputs,
990
960
  ([] if self._drop_input_cols else inputs)
991
961
  + outputs)
962
+
992
963
  for prob_func in PROB_FUNCTIONS:
993
964
  if hasattr(self, prob_func):
994
965
  output_cols_prefix: str = f"{prob_func}_"