snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class DictionaryLearning(BaseTransformer):
|
57
58
|
r"""Dictionary learning
|
58
59
|
For more details on this class, see [sklearn.decomposition.DictionaryLearning]
|
@@ -60,6 +61,49 @@ class DictionaryLearning(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of dictionary elements to extract. If None, then ``n_components``
|
65
109
|
is set to ``n_features``.
|
@@ -148,35 +192,6 @@ class DictionaryLearning(BaseTransformer):
|
|
148
192
|
transform_max_iter: int, default=1000
|
149
193
|
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
150
194
|
`'lasso_lars'`.
|
151
|
-
|
152
|
-
input_cols: Optional[Union[str, List[str]]]
|
153
|
-
A string or list of strings representing column names that contain features.
|
154
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
155
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
156
|
-
considered input columns.
|
157
|
-
|
158
|
-
label_cols: Optional[Union[str, List[str]]]
|
159
|
-
A string or list of strings representing column names that contain labels.
|
160
|
-
This is a required param for estimators, as there is no way to infer these
|
161
|
-
columns. If this parameter is not specified, then object is fitted without
|
162
|
-
labels (like a transformer).
|
163
|
-
|
164
|
-
output_cols: Optional[Union[str, List[str]]]
|
165
|
-
A string or list of strings representing column names that will store the
|
166
|
-
output of predict and transform operations. The length of output_cols must
|
167
|
-
match the expected number of output columns from the specific estimator or
|
168
|
-
transformer class used.
|
169
|
-
If this parameter is not specified, output column names are derived by
|
170
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
171
|
-
column names work for estimator's predict() method, but output_cols must
|
172
|
-
be set explicitly for transformers.
|
173
|
-
|
174
|
-
sample_weight_col: Optional[str]
|
175
|
-
A string representing the column name containing the sample weights.
|
176
|
-
This argument is only required when working with weighted datasets.
|
177
|
-
|
178
|
-
drop_input_cols: Optional[bool], default=False
|
179
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
180
195
|
"""
|
181
196
|
|
182
197
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -203,6 +218,7 @@ class DictionaryLearning(BaseTransformer):
|
|
203
218
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
204
219
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
205
220
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
221
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
206
222
|
drop_input_cols: Optional[bool] = False,
|
207
223
|
sample_weight_col: Optional[str] = None,
|
208
224
|
) -> None:
|
@@ -211,9 +227,10 @@ class DictionaryLearning(BaseTransformer):
|
|
211
227
|
self.set_input_cols(input_cols)
|
212
228
|
self.set_output_cols(output_cols)
|
213
229
|
self.set_label_cols(label_cols)
|
230
|
+
self.set_passthrough_cols(passthrough_cols)
|
214
231
|
self.set_drop_input_cols(drop_input_cols)
|
215
232
|
self.set_sample_weight_col(sample_weight_col)
|
216
|
-
deps = set(
|
233
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
217
234
|
|
218
235
|
self._deps = list(deps)
|
219
236
|
|
@@ -239,13 +256,14 @@ class DictionaryLearning(BaseTransformer):
|
|
239
256
|
args=init_args,
|
240
257
|
klass=sklearn.decomposition.DictionaryLearning
|
241
258
|
)
|
242
|
-
self._sklearn_object = sklearn.decomposition.DictionaryLearning(
|
259
|
+
self._sklearn_object: Any = sklearn.decomposition.DictionaryLearning(
|
243
260
|
**cleaned_up_init_args,
|
244
261
|
)
|
245
262
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
246
263
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
247
264
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
248
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
265
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
266
|
+
self._autogenerated = True
|
249
267
|
|
250
268
|
def _get_rand_id(self) -> str:
|
251
269
|
"""
|
@@ -256,24 +274,6 @@ class DictionaryLearning(BaseTransformer):
|
|
256
274
|
"""
|
257
275
|
return str(uuid4()).replace("-", "_").upper()
|
258
276
|
|
259
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
260
|
-
"""
|
261
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
262
|
-
|
263
|
-
Args:
|
264
|
-
dataset: Input dataset.
|
265
|
-
"""
|
266
|
-
if not self.input_cols:
|
267
|
-
cols = [
|
268
|
-
c for c in dataset.columns
|
269
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
270
|
-
]
|
271
|
-
self.set_input_cols(input_cols=cols)
|
272
|
-
|
273
|
-
if not self.output_cols:
|
274
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
275
|
-
self.set_output_cols(output_cols=cols)
|
276
|
-
|
277
277
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "DictionaryLearning":
|
278
278
|
"""
|
279
279
|
Input columns setter.
|
@@ -319,54 +319,48 @@ class DictionaryLearning(BaseTransformer):
|
|
319
319
|
self
|
320
320
|
"""
|
321
321
|
self._infer_input_output_cols(dataset)
|
322
|
-
if isinstance(dataset,
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
self.
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
322
|
+
if isinstance(dataset, DataFrame):
|
323
|
+
session = dataset._session
|
324
|
+
assert session is not None # keep mypy happy
|
325
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
326
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
327
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
328
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
329
|
+
|
330
|
+
# Specify input columns so column pruning will be enforced
|
331
|
+
selected_cols = self._get_active_columns()
|
332
|
+
if len(selected_cols) > 0:
|
333
|
+
dataset = dataset.select(selected_cols)
|
334
|
+
|
335
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
336
|
+
|
337
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
338
|
+
if SNOWML_SPROC_ENV in os.environ:
|
339
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
340
|
+
project=_PROJECT,
|
341
|
+
subproject=_SUBPROJECT,
|
342
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DictionaryLearning.__class__.__name__),
|
343
|
+
api_calls=[Session.call],
|
344
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
345
|
+
)
|
346
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
347
|
+
pd_df.columns = dataset.columns
|
348
|
+
dataset = pd_df
|
349
|
+
|
350
|
+
model_trainer = ModelTrainerBuilder.build(
|
351
|
+
estimator=self._sklearn_object,
|
352
|
+
dataset=dataset,
|
353
|
+
input_cols=self.input_cols,
|
354
|
+
label_cols=self.label_cols,
|
355
|
+
sample_weight_col=self.sample_weight_col,
|
356
|
+
autogenerated=self._autogenerated,
|
357
|
+
subproject=_SUBPROJECT
|
358
|
+
)
|
359
|
+
self._sklearn_object = model_trainer.train()
|
338
360
|
self._is_fitted = True
|
339
361
|
self._get_model_signatures(dataset)
|
340
362
|
return self
|
341
363
|
|
342
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
343
|
-
session = dataset._session
|
344
|
-
assert session is not None # keep mypy happy
|
345
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
346
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
347
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
348
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
349
|
-
|
350
|
-
# Specify input columns so column pruning will be enforced
|
351
|
-
selected_cols = self._get_active_columns()
|
352
|
-
if len(selected_cols) > 0:
|
353
|
-
dataset = dataset.select(selected_cols)
|
354
|
-
|
355
|
-
estimator = self._sklearn_object
|
356
|
-
assert estimator is not None # Keep mypy happy
|
357
|
-
|
358
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
359
|
-
|
360
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
361
|
-
dataset,
|
362
|
-
session,
|
363
|
-
estimator,
|
364
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
365
|
-
self.input_cols,
|
366
|
-
self.label_cols,
|
367
|
-
self.sample_weight_col,
|
368
|
-
)
|
369
|
-
|
370
364
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
371
365
|
if self._drop_input_cols:
|
372
366
|
return []
|
@@ -554,11 +548,6 @@ class DictionaryLearning(BaseTransformer):
|
|
554
548
|
subproject=_SUBPROJECT,
|
555
549
|
custom_tags=dict([("autogen", True)]),
|
556
550
|
)
|
557
|
-
@telemetry.add_stmt_params_to_df(
|
558
|
-
project=_PROJECT,
|
559
|
-
subproject=_SUBPROJECT,
|
560
|
-
custom_tags=dict([("autogen", True)]),
|
561
|
-
)
|
562
551
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
563
552
|
"""Method not supported for this class.
|
564
553
|
|
@@ -610,11 +599,6 @@ class DictionaryLearning(BaseTransformer):
|
|
610
599
|
subproject=_SUBPROJECT,
|
611
600
|
custom_tags=dict([("autogen", True)]),
|
612
601
|
)
|
613
|
-
@telemetry.add_stmt_params_to_df(
|
614
|
-
project=_PROJECT,
|
615
|
-
subproject=_SUBPROJECT,
|
616
|
-
custom_tags=dict([("autogen", True)]),
|
617
|
-
)
|
618
602
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
619
603
|
"""Encode the data as a sparse combination of the dictionary atoms
|
620
604
|
For more details on this function, see [sklearn.decomposition.DictionaryLearning.transform]
|
@@ -673,7 +657,8 @@ class DictionaryLearning(BaseTransformer):
|
|
673
657
|
if False:
|
674
658
|
self.fit(dataset)
|
675
659
|
assert self._sklearn_object is not None
|
676
|
-
|
660
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
661
|
+
return labels
|
677
662
|
else:
|
678
663
|
raise NotImplementedError
|
679
664
|
|
@@ -709,6 +694,7 @@ class DictionaryLearning(BaseTransformer):
|
|
709
694
|
output_cols = []
|
710
695
|
|
711
696
|
# Make sure column names are valid snowflake identifiers.
|
697
|
+
assert output_cols is not None # Make MyPy happy
|
712
698
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
713
699
|
|
714
700
|
return rv
|
@@ -719,11 +705,6 @@ class DictionaryLearning(BaseTransformer):
|
|
719
705
|
subproject=_SUBPROJECT,
|
720
706
|
custom_tags=dict([("autogen", True)]),
|
721
707
|
)
|
722
|
-
@telemetry.add_stmt_params_to_df(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
708
|
def predict_proba(
|
728
709
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
729
710
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -764,11 +745,6 @@ class DictionaryLearning(BaseTransformer):
|
|
764
745
|
subproject=_SUBPROJECT,
|
765
746
|
custom_tags=dict([("autogen", True)]),
|
766
747
|
)
|
767
|
-
@telemetry.add_stmt_params_to_df(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
748
|
def predict_log_proba(
|
773
749
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
774
750
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -805,16 +781,6 @@ class DictionaryLearning(BaseTransformer):
|
|
805
781
|
return output_df
|
806
782
|
|
807
783
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
808
|
-
@telemetry.send_api_usage_telemetry(
|
809
|
-
project=_PROJECT,
|
810
|
-
subproject=_SUBPROJECT,
|
811
|
-
custom_tags=dict([("autogen", True)]),
|
812
|
-
)
|
813
|
-
@telemetry.add_stmt_params_to_df(
|
814
|
-
project=_PROJECT,
|
815
|
-
subproject=_SUBPROJECT,
|
816
|
-
custom_tags=dict([("autogen", True)]),
|
817
|
-
)
|
818
784
|
def decision_function(
|
819
785
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
820
786
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -913,11 +879,6 @@ class DictionaryLearning(BaseTransformer):
|
|
913
879
|
subproject=_SUBPROJECT,
|
914
880
|
custom_tags=dict([("autogen", True)]),
|
915
881
|
)
|
916
|
-
@telemetry.add_stmt_params_to_df(
|
917
|
-
project=_PROJECT,
|
918
|
-
subproject=_SUBPROJECT,
|
919
|
-
custom_tags=dict([("autogen", True)]),
|
920
|
-
)
|
921
882
|
def kneighbors(
|
922
883
|
self,
|
923
884
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -977,18 +938,28 @@ class DictionaryLearning(BaseTransformer):
|
|
977
938
|
# For classifier, the type of predict is the same as the type of label
|
978
939
|
if self._sklearn_object._estimator_type == 'classifier':
|
979
940
|
# label columns is the desired type for output
|
980
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
941
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
981
942
|
# rename the output columns
|
982
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
943
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
944
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
945
|
+
([] if self._drop_input_cols else inputs)
|
946
|
+
+ outputs)
|
947
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
948
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
949
|
+
# Clusterer returns int64 cluster labels.
|
950
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
951
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
983
952
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
984
953
|
([] if self._drop_input_cols else inputs)
|
985
954
|
+ outputs)
|
955
|
+
|
986
956
|
# For regressor, the type of predict is float64
|
987
957
|
elif self._sklearn_object._estimator_type == 'regressor':
|
988
958
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
989
959
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
990
960
|
([] if self._drop_input_cols else inputs)
|
991
961
|
+ outputs)
|
962
|
+
|
992
963
|
for prob_func in PROB_FUNCTIONS:
|
993
964
|
if hasattr(self, prob_func):
|
994
965
|
output_cols_prefix: str = f"{prob_func}_"
|