snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MiniBatchDictionaryLearning(BaseTransformer):
57
58
  r"""Mini-batch dictionary learning
58
59
  For more details on this class, see [sklearn.decomposition.MiniBatchDictionaryLearning]
@@ -60,6 +61,49 @@ class MiniBatchDictionaryLearning(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Number of dictionary elements to extract.
65
109
 
@@ -167,35 +211,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
167
211
 
168
212
  To disable convergence detection based on cost function, set
169
213
  `max_no_improvement` to None.
170
-
171
- input_cols: Optional[Union[str, List[str]]]
172
- A string or list of strings representing column names that contain features.
173
- If this parameter is not specified, all columns in the input DataFrame except
174
- the columns specified by label_cols and sample_weight_col parameters are
175
- considered input columns.
176
-
177
- label_cols: Optional[Union[str, List[str]]]
178
- A string or list of strings representing column names that contain labels.
179
- This is a required param for estimators, as there is no way to infer these
180
- columns. If this parameter is not specified, then object is fitted without
181
- labels (like a transformer).
182
-
183
- output_cols: Optional[Union[str, List[str]]]
184
- A string or list of strings representing column names that will store the
185
- output of predict and transform operations. The length of output_cols must
186
- match the expected number of output columns from the specific estimator or
187
- transformer class used.
188
- If this parameter is not specified, output column names are derived by
189
- adding an OUTPUT_ prefix to the label column names. These inferred output
190
- column names work for estimator's predict() method, but output_cols must
191
- be set explicitly for transformers.
192
-
193
- sample_weight_col: Optional[str]
194
- A string representing the column name containing the sample weights.
195
- This argument is only required when working with weighted datasets.
196
-
197
- drop_input_cols: Optional[bool], default=False
198
- If set, the response of predict(), transform() methods will not contain input columns.
199
214
  """
200
215
 
201
216
  def __init__( # type: ignore[no-untyped-def]
@@ -225,6 +240,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
225
240
  input_cols: Optional[Union[str, Iterable[str]]] = None,
226
241
  output_cols: Optional[Union[str, Iterable[str]]] = None,
227
242
  label_cols: Optional[Union[str, Iterable[str]]] = None,
243
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
228
244
  drop_input_cols: Optional[bool] = False,
229
245
  sample_weight_col: Optional[str] = None,
230
246
  ) -> None:
@@ -233,9 +249,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
233
249
  self.set_input_cols(input_cols)
234
250
  self.set_output_cols(output_cols)
235
251
  self.set_label_cols(label_cols)
252
+ self.set_passthrough_cols(passthrough_cols)
236
253
  self.set_drop_input_cols(drop_input_cols)
237
254
  self.set_sample_weight_col(sample_weight_col)
238
- deps = set(SklearnWrapperProvider().dependencies)
255
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
239
256
 
240
257
  self._deps = list(deps)
241
258
 
@@ -264,13 +281,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
264
281
  args=init_args,
265
282
  klass=sklearn.decomposition.MiniBatchDictionaryLearning
266
283
  )
267
- self._sklearn_object = sklearn.decomposition.MiniBatchDictionaryLearning(
284
+ self._sklearn_object: Any = sklearn.decomposition.MiniBatchDictionaryLearning(
268
285
  **cleaned_up_init_args,
269
286
  )
270
287
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
271
288
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
272
289
  self._snowpark_cols: Optional[List[str]] = self.input_cols
273
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
290
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
291
+ self._autogenerated = True
274
292
 
275
293
  def _get_rand_id(self) -> str:
276
294
  """
@@ -281,24 +299,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
281
299
  """
282
300
  return str(uuid4()).replace("-", "_").upper()
283
301
 
284
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
285
- """
286
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
287
-
288
- Args:
289
- dataset: Input dataset.
290
- """
291
- if not self.input_cols:
292
- cols = [
293
- c for c in dataset.columns
294
- if c not in self.get_label_cols() and c != self.sample_weight_col
295
- ]
296
- self.set_input_cols(input_cols=cols)
297
-
298
- if not self.output_cols:
299
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
300
- self.set_output_cols(output_cols=cols)
301
-
302
302
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MiniBatchDictionaryLearning":
303
303
  """
304
304
  Input columns setter.
@@ -344,54 +344,48 @@ class MiniBatchDictionaryLearning(BaseTransformer):
344
344
  self
345
345
  """
346
346
  self._infer_input_output_cols(dataset)
347
- if isinstance(dataset, pd.DataFrame):
348
- assert self._sklearn_object is not None # keep mypy happy
349
- self._sklearn_object = self._handlers.fit_pandas(
350
- dataset,
351
- self._sklearn_object,
352
- self.input_cols,
353
- self.label_cols,
354
- self.sample_weight_col
355
- )
356
- elif isinstance(dataset, DataFrame):
357
- self._fit_snowpark(dataset)
358
- else:
359
- raise TypeError(
360
- f"Unexpected dataset type: {type(dataset)}."
361
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
362
- )
347
+ if isinstance(dataset, DataFrame):
348
+ session = dataset._session
349
+ assert session is not None # keep mypy happy
350
+ # Validate that key package version in user workspace are supported in snowflake conda channel
351
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
352
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
353
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
354
+
355
+ # Specify input columns so column pruning will be enforced
356
+ selected_cols = self._get_active_columns()
357
+ if len(selected_cols) > 0:
358
+ dataset = dataset.select(selected_cols)
359
+
360
+ self._snowpark_cols = dataset.select(self.input_cols).columns
361
+
362
+ # If we are already in a stored procedure, no need to kick off another one.
363
+ if SNOWML_SPROC_ENV in os.environ:
364
+ statement_params = telemetry.get_function_usage_statement_params(
365
+ project=_PROJECT,
366
+ subproject=_SUBPROJECT,
367
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__),
368
+ api_calls=[Session.call],
369
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
370
+ )
371
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
372
+ pd_df.columns = dataset.columns
373
+ dataset = pd_df
374
+
375
+ model_trainer = ModelTrainerBuilder.build(
376
+ estimator=self._sklearn_object,
377
+ dataset=dataset,
378
+ input_cols=self.input_cols,
379
+ label_cols=self.label_cols,
380
+ sample_weight_col=self.sample_weight_col,
381
+ autogenerated=self._autogenerated,
382
+ subproject=_SUBPROJECT
383
+ )
384
+ self._sklearn_object = model_trainer.train()
363
385
  self._is_fitted = True
364
386
  self._get_model_signatures(dataset)
365
387
  return self
366
388
 
367
- def _fit_snowpark(self, dataset: DataFrame) -> None:
368
- session = dataset._session
369
- assert session is not None # keep mypy happy
370
- # Validate that key package version in user workspace are supported in snowflake conda channel
371
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
372
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
373
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
374
-
375
- # Specify input columns so column pruning will be enforced
376
- selected_cols = self._get_active_columns()
377
- if len(selected_cols) > 0:
378
- dataset = dataset.select(selected_cols)
379
-
380
- estimator = self._sklearn_object
381
- assert estimator is not None # Keep mypy happy
382
-
383
- self._snowpark_cols = dataset.select(self.input_cols).columns
384
-
385
- self._sklearn_object = self._handlers.fit_snowpark(
386
- dataset,
387
- session,
388
- estimator,
389
- ["snowflake-snowpark-python"] + self._get_dependencies(),
390
- self.input_cols,
391
- self.label_cols,
392
- self.sample_weight_col,
393
- )
394
-
395
389
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
396
390
  if self._drop_input_cols:
397
391
  return []
@@ -579,11 +573,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
579
573
  subproject=_SUBPROJECT,
580
574
  custom_tags=dict([("autogen", True)]),
581
575
  )
582
- @telemetry.add_stmt_params_to_df(
583
- project=_PROJECT,
584
- subproject=_SUBPROJECT,
585
- custom_tags=dict([("autogen", True)]),
586
- )
587
576
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
588
577
  """Method not supported for this class.
589
578
 
@@ -635,11 +624,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
635
624
  subproject=_SUBPROJECT,
636
625
  custom_tags=dict([("autogen", True)]),
637
626
  )
638
- @telemetry.add_stmt_params_to_df(
639
- project=_PROJECT,
640
- subproject=_SUBPROJECT,
641
- custom_tags=dict([("autogen", True)]),
642
- )
643
627
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
644
628
  """Encode the data as a sparse combination of the dictionary atoms
645
629
  For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.transform]
@@ -698,7 +682,8 @@ class MiniBatchDictionaryLearning(BaseTransformer):
698
682
  if False:
699
683
  self.fit(dataset)
700
684
  assert self._sklearn_object is not None
701
- return self._sklearn_object.labels_
685
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
686
+ return labels
702
687
  else:
703
688
  raise NotImplementedError
704
689
 
@@ -734,6 +719,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
734
719
  output_cols = []
735
720
 
736
721
  # Make sure column names are valid snowflake identifiers.
722
+ assert output_cols is not None # Make MyPy happy
737
723
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
738
724
 
739
725
  return rv
@@ -744,11 +730,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
744
730
  subproject=_SUBPROJECT,
745
731
  custom_tags=dict([("autogen", True)]),
746
732
  )
747
- @telemetry.add_stmt_params_to_df(
748
- project=_PROJECT,
749
- subproject=_SUBPROJECT,
750
- custom_tags=dict([("autogen", True)]),
751
- )
752
733
  def predict_proba(
753
734
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
754
735
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -789,11 +770,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
789
770
  subproject=_SUBPROJECT,
790
771
  custom_tags=dict([("autogen", True)]),
791
772
  )
792
- @telemetry.add_stmt_params_to_df(
793
- project=_PROJECT,
794
- subproject=_SUBPROJECT,
795
- custom_tags=dict([("autogen", True)]),
796
- )
797
773
  def predict_log_proba(
798
774
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
799
775
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -830,16 +806,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
830
806
  return output_df
831
807
 
832
808
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
833
- @telemetry.send_api_usage_telemetry(
834
- project=_PROJECT,
835
- subproject=_SUBPROJECT,
836
- custom_tags=dict([("autogen", True)]),
837
- )
838
- @telemetry.add_stmt_params_to_df(
839
- project=_PROJECT,
840
- subproject=_SUBPROJECT,
841
- custom_tags=dict([("autogen", True)]),
842
- )
843
809
  def decision_function(
844
810
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
845
811
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -938,11 +904,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
938
904
  subproject=_SUBPROJECT,
939
905
  custom_tags=dict([("autogen", True)]),
940
906
  )
941
- @telemetry.add_stmt_params_to_df(
942
- project=_PROJECT,
943
- subproject=_SUBPROJECT,
944
- custom_tags=dict([("autogen", True)]),
945
- )
946
907
  def kneighbors(
947
908
  self,
948
909
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1002,18 +963,28 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1002
963
  # For classifier, the type of predict is the same as the type of label
1003
964
  if self._sklearn_object._estimator_type == 'classifier':
1004
965
  # label columns is the desired type for output
1005
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
966
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
967
  # rename the output columns
1007
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
968
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
969
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
970
+ ([] if self._drop_input_cols else inputs)
971
+ + outputs)
972
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
973
+ # For outlier models, returns -1 for outliers and 1 for inliers.
974
+ # Clusterer returns int64 cluster labels.
975
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
976
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1008
977
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
978
  ([] if self._drop_input_cols else inputs)
1010
979
  + outputs)
980
+
1011
981
  # For regressor, the type of predict is float64
1012
982
  elif self._sklearn_object._estimator_type == 'regressor':
1013
983
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1014
984
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
985
  ([] if self._drop_input_cols else inputs)
1016
986
  + outputs)
987
+
1017
988
  for prob_func in PROB_FUNCTIONS:
1018
989
  if hasattr(self, prob_func):
1019
990
  output_cols_prefix: str = f"{prob_func}_"