snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MiniBatchDictionaryLearning(BaseTransformer):
|
57
58
|
r"""Mini-batch dictionary learning
|
58
59
|
For more details on this class, see [sklearn.decomposition.MiniBatchDictionaryLearning]
|
@@ -60,6 +61,49 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of dictionary elements to extract.
|
65
109
|
|
@@ -167,35 +211,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
167
211
|
|
168
212
|
To disable convergence detection based on cost function, set
|
169
213
|
`max_no_improvement` to None.
|
170
|
-
|
171
|
-
input_cols: Optional[Union[str, List[str]]]
|
172
|
-
A string or list of strings representing column names that contain features.
|
173
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
174
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
175
|
-
considered input columns.
|
176
|
-
|
177
|
-
label_cols: Optional[Union[str, List[str]]]
|
178
|
-
A string or list of strings representing column names that contain labels.
|
179
|
-
This is a required param for estimators, as there is no way to infer these
|
180
|
-
columns. If this parameter is not specified, then object is fitted without
|
181
|
-
labels (like a transformer).
|
182
|
-
|
183
|
-
output_cols: Optional[Union[str, List[str]]]
|
184
|
-
A string or list of strings representing column names that will store the
|
185
|
-
output of predict and transform operations. The length of output_cols must
|
186
|
-
match the expected number of output columns from the specific estimator or
|
187
|
-
transformer class used.
|
188
|
-
If this parameter is not specified, output column names are derived by
|
189
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
190
|
-
column names work for estimator's predict() method, but output_cols must
|
191
|
-
be set explicitly for transformers.
|
192
|
-
|
193
|
-
sample_weight_col: Optional[str]
|
194
|
-
A string representing the column name containing the sample weights.
|
195
|
-
This argument is only required when working with weighted datasets.
|
196
|
-
|
197
|
-
drop_input_cols: Optional[bool], default=False
|
198
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
199
214
|
"""
|
200
215
|
|
201
216
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -225,6 +240,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
225
240
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
226
241
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
227
242
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
243
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
228
244
|
drop_input_cols: Optional[bool] = False,
|
229
245
|
sample_weight_col: Optional[str] = None,
|
230
246
|
) -> None:
|
@@ -233,9 +249,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
233
249
|
self.set_input_cols(input_cols)
|
234
250
|
self.set_output_cols(output_cols)
|
235
251
|
self.set_label_cols(label_cols)
|
252
|
+
self.set_passthrough_cols(passthrough_cols)
|
236
253
|
self.set_drop_input_cols(drop_input_cols)
|
237
254
|
self.set_sample_weight_col(sample_weight_col)
|
238
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
239
256
|
|
240
257
|
self._deps = list(deps)
|
241
258
|
|
@@ -264,13 +281,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
264
281
|
args=init_args,
|
265
282
|
klass=sklearn.decomposition.MiniBatchDictionaryLearning
|
266
283
|
)
|
267
|
-
self._sklearn_object = sklearn.decomposition.MiniBatchDictionaryLearning(
|
284
|
+
self._sklearn_object: Any = sklearn.decomposition.MiniBatchDictionaryLearning(
|
268
285
|
**cleaned_up_init_args,
|
269
286
|
)
|
270
287
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
271
288
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
272
289
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
273
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
290
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
291
|
+
self._autogenerated = True
|
274
292
|
|
275
293
|
def _get_rand_id(self) -> str:
|
276
294
|
"""
|
@@ -281,24 +299,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
281
299
|
"""
|
282
300
|
return str(uuid4()).replace("-", "_").upper()
|
283
301
|
|
284
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
285
|
-
"""
|
286
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
287
|
-
|
288
|
-
Args:
|
289
|
-
dataset: Input dataset.
|
290
|
-
"""
|
291
|
-
if not self.input_cols:
|
292
|
-
cols = [
|
293
|
-
c for c in dataset.columns
|
294
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
295
|
-
]
|
296
|
-
self.set_input_cols(input_cols=cols)
|
297
|
-
|
298
|
-
if not self.output_cols:
|
299
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
300
|
-
self.set_output_cols(output_cols=cols)
|
301
|
-
|
302
302
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MiniBatchDictionaryLearning":
|
303
303
|
"""
|
304
304
|
Input columns setter.
|
@@ -344,54 +344,48 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
344
344
|
self
|
345
345
|
"""
|
346
346
|
self._infer_input_output_cols(dataset)
|
347
|
-
if isinstance(dataset,
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
self.
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
347
|
+
if isinstance(dataset, DataFrame):
|
348
|
+
session = dataset._session
|
349
|
+
assert session is not None # keep mypy happy
|
350
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
351
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
352
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
353
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
354
|
+
|
355
|
+
# Specify input columns so column pruning will be enforced
|
356
|
+
selected_cols = self._get_active_columns()
|
357
|
+
if len(selected_cols) > 0:
|
358
|
+
dataset = dataset.select(selected_cols)
|
359
|
+
|
360
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
361
|
+
|
362
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
363
|
+
if SNOWML_SPROC_ENV in os.environ:
|
364
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
365
|
+
project=_PROJECT,
|
366
|
+
subproject=_SUBPROJECT,
|
367
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__),
|
368
|
+
api_calls=[Session.call],
|
369
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
370
|
+
)
|
371
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
372
|
+
pd_df.columns = dataset.columns
|
373
|
+
dataset = pd_df
|
374
|
+
|
375
|
+
model_trainer = ModelTrainerBuilder.build(
|
376
|
+
estimator=self._sklearn_object,
|
377
|
+
dataset=dataset,
|
378
|
+
input_cols=self.input_cols,
|
379
|
+
label_cols=self.label_cols,
|
380
|
+
sample_weight_col=self.sample_weight_col,
|
381
|
+
autogenerated=self._autogenerated,
|
382
|
+
subproject=_SUBPROJECT
|
383
|
+
)
|
384
|
+
self._sklearn_object = model_trainer.train()
|
363
385
|
self._is_fitted = True
|
364
386
|
self._get_model_signatures(dataset)
|
365
387
|
return self
|
366
388
|
|
367
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
368
|
-
session = dataset._session
|
369
|
-
assert session is not None # keep mypy happy
|
370
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
371
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
372
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
373
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
374
|
-
|
375
|
-
# Specify input columns so column pruning will be enforced
|
376
|
-
selected_cols = self._get_active_columns()
|
377
|
-
if len(selected_cols) > 0:
|
378
|
-
dataset = dataset.select(selected_cols)
|
379
|
-
|
380
|
-
estimator = self._sklearn_object
|
381
|
-
assert estimator is not None # Keep mypy happy
|
382
|
-
|
383
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
384
|
-
|
385
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
386
|
-
dataset,
|
387
|
-
session,
|
388
|
-
estimator,
|
389
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
390
|
-
self.input_cols,
|
391
|
-
self.label_cols,
|
392
|
-
self.sample_weight_col,
|
393
|
-
)
|
394
|
-
|
395
389
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
396
390
|
if self._drop_input_cols:
|
397
391
|
return []
|
@@ -579,11 +573,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
579
573
|
subproject=_SUBPROJECT,
|
580
574
|
custom_tags=dict([("autogen", True)]),
|
581
575
|
)
|
582
|
-
@telemetry.add_stmt_params_to_df(
|
583
|
-
project=_PROJECT,
|
584
|
-
subproject=_SUBPROJECT,
|
585
|
-
custom_tags=dict([("autogen", True)]),
|
586
|
-
)
|
587
576
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
588
577
|
"""Method not supported for this class.
|
589
578
|
|
@@ -635,11 +624,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
635
624
|
subproject=_SUBPROJECT,
|
636
625
|
custom_tags=dict([("autogen", True)]),
|
637
626
|
)
|
638
|
-
@telemetry.add_stmt_params_to_df(
|
639
|
-
project=_PROJECT,
|
640
|
-
subproject=_SUBPROJECT,
|
641
|
-
custom_tags=dict([("autogen", True)]),
|
642
|
-
)
|
643
627
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
644
628
|
"""Encode the data as a sparse combination of the dictionary atoms
|
645
629
|
For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.transform]
|
@@ -698,7 +682,8 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
698
682
|
if False:
|
699
683
|
self.fit(dataset)
|
700
684
|
assert self._sklearn_object is not None
|
701
|
-
|
685
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
686
|
+
return labels
|
702
687
|
else:
|
703
688
|
raise NotImplementedError
|
704
689
|
|
@@ -734,6 +719,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
734
719
|
output_cols = []
|
735
720
|
|
736
721
|
# Make sure column names are valid snowflake identifiers.
|
722
|
+
assert output_cols is not None # Make MyPy happy
|
737
723
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
738
724
|
|
739
725
|
return rv
|
@@ -744,11 +730,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
744
730
|
subproject=_SUBPROJECT,
|
745
731
|
custom_tags=dict([("autogen", True)]),
|
746
732
|
)
|
747
|
-
@telemetry.add_stmt_params_to_df(
|
748
|
-
project=_PROJECT,
|
749
|
-
subproject=_SUBPROJECT,
|
750
|
-
custom_tags=dict([("autogen", True)]),
|
751
|
-
)
|
752
733
|
def predict_proba(
|
753
734
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
754
735
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -789,11 +770,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
789
770
|
subproject=_SUBPROJECT,
|
790
771
|
custom_tags=dict([("autogen", True)]),
|
791
772
|
)
|
792
|
-
@telemetry.add_stmt_params_to_df(
|
793
|
-
project=_PROJECT,
|
794
|
-
subproject=_SUBPROJECT,
|
795
|
-
custom_tags=dict([("autogen", True)]),
|
796
|
-
)
|
797
773
|
def predict_log_proba(
|
798
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
799
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -830,16 +806,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
830
806
|
return output_df
|
831
807
|
|
832
808
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
833
|
-
@telemetry.send_api_usage_telemetry(
|
834
|
-
project=_PROJECT,
|
835
|
-
subproject=_SUBPROJECT,
|
836
|
-
custom_tags=dict([("autogen", True)]),
|
837
|
-
)
|
838
|
-
@telemetry.add_stmt_params_to_df(
|
839
|
-
project=_PROJECT,
|
840
|
-
subproject=_SUBPROJECT,
|
841
|
-
custom_tags=dict([("autogen", True)]),
|
842
|
-
)
|
843
809
|
def decision_function(
|
844
810
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
845
811
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -938,11 +904,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
938
904
|
subproject=_SUBPROJECT,
|
939
905
|
custom_tags=dict([("autogen", True)]),
|
940
906
|
)
|
941
|
-
@telemetry.add_stmt_params_to_df(
|
942
|
-
project=_PROJECT,
|
943
|
-
subproject=_SUBPROJECT,
|
944
|
-
custom_tags=dict([("autogen", True)]),
|
945
|
-
)
|
946
907
|
def kneighbors(
|
947
908
|
self,
|
948
909
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1002,18 +963,28 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
1002
963
|
# For classifier, the type of predict is the same as the type of label
|
1003
964
|
if self._sklearn_object._estimator_type == 'classifier':
|
1004
965
|
# label columns is the desired type for output
|
1005
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
966
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1006
967
|
# rename the output columns
|
1007
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
968
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
969
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
970
|
+
([] if self._drop_input_cols else inputs)
|
971
|
+
+ outputs)
|
972
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
973
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
974
|
+
# Clusterer returns int64 cluster labels.
|
975
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
976
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1008
977
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1009
978
|
([] if self._drop_input_cols else inputs)
|
1010
979
|
+ outputs)
|
980
|
+
|
1011
981
|
# For regressor, the type of predict is float64
|
1012
982
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1013
983
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1014
984
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1015
985
|
([] if self._drop_input_cols else inputs)
|
1016
986
|
+ outputs)
|
987
|
+
|
1017
988
|
for prob_func in PROB_FUNCTIONS:
|
1018
989
|
if hasattr(self, prob_func):
|
1019
990
|
output_cols_prefix: str = f"{prob_func}_"
|