snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -1,51 +1,29 @@
1
1
  import importlib
2
2
  import inspect
3
- import io
4
3
  import os
5
4
  import posixpath
6
- import sys
7
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
5
+ from typing import Any, Dict, List, Optional
8
6
  from uuid import uuid4
9
7
 
10
8
  import cloudpickle as cp
11
- import numpy as np
12
9
  import pandas as pd
13
- import sklearn
14
- from scipy.stats import rankdata
15
- from sklearn import model_selection
16
10
 
17
11
  from snowflake.ml._internal import telemetry
18
12
  from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
19
- from snowflake.ml._internal.exceptions import (
20
- error_codes,
21
- exceptions,
22
- modeling_error_messages,
23
- )
13
+ from snowflake.ml._internal.exceptions import error_codes, exceptions
24
14
  from snowflake.ml._internal.utils import identifier, snowpark_dataframe_utils
25
15
  from snowflake.ml._internal.utils.query_result_checker import SqlResultValidator
26
16
  from snowflake.ml._internal.utils.temp_file_utils import (
27
17
  cleanup_temp_files,
28
18
  get_temp_file_path,
29
19
  )
30
- from snowflake.snowpark import (
31
- DataFrame,
32
- Session,
33
- exceptions as snowpark_exceptions,
34
- functions as F,
35
- )
20
+ from snowflake.snowpark import DataFrame, Session
36
21
  from snowflake.snowpark._internal.utils import (
37
22
  TempObjectType,
38
23
  random_name_for_temp_object,
39
24
  )
40
- from snowflake.snowpark.functions import col, pandas_udf, sproc, udtf
41
- from snowflake.snowpark.stored_procedure import StoredProcedure
42
- from snowflake.snowpark.types import (
43
- IntegerType,
44
- PandasSeries,
45
- StringType,
46
- StructField,
47
- StructType,
48
- )
25
+ from snowflake.snowpark.functions import pandas_udf, sproc
26
+ from snowflake.snowpark.types import PandasSeries
49
27
 
50
28
  cp.register_pickle_by_value(inspect.getmodule(get_temp_file_path))
51
29
  cp.register_pickle_by_value(inspect.getmodule(identifier.get_inferred_name))
@@ -53,144 +31,6 @@ cp.register_pickle_by_value(inspect.getmodule(identifier.get_inferred_name))
53
31
  _PROJECT = "ModelDevelopment"
54
32
 
55
33
 
56
- class WrapperProvider:
57
- def __init__(self) -> None:
58
- self.imports: List[str] = []
59
- self.dependencies: List[str] = []
60
-
61
- def get_fit_wrapper_function(
62
- self,
63
- ) -> Callable[[Any, List[str], str, str, List[str], List[str], Optional[str], Dict[str, str]], str]:
64
- imports = self.imports # In order for the sproc to not resolve this reference in snowflake.ml
65
-
66
- def fit_wrapper_function(
67
- session: Session,
68
- sql_queries: List[str],
69
- stage_transform_file_name: str,
70
- stage_result_file_name: str,
71
- input_cols: List[str],
72
- label_cols: List[str],
73
- sample_weight_col: Optional[str],
74
- statement_params: Dict[str, str],
75
- ) -> str:
76
- import inspect
77
- import os
78
-
79
- import cloudpickle as cp
80
- import pandas as pd
81
-
82
- for import_name in imports:
83
- importlib.import_module(import_name)
84
-
85
- # Execute snowpark queries and obtain the results as pandas dataframe
86
- # NB: this implies that the result data must fit into memory.
87
- for query in sql_queries[:-1]:
88
- _ = session.sql(query).collect(statement_params=statement_params)
89
- sp_df = session.sql(sql_queries[-1])
90
- df: pd.DataFrame = sp_df.to_pandas(statement_params=statement_params)
91
- df.columns = sp_df.columns
92
-
93
- local_transform_file_name = get_temp_file_path()
94
-
95
- session.file.get(stage_transform_file_name, local_transform_file_name, statement_params=statement_params)
96
-
97
- local_transform_file_path = os.path.join(
98
- local_transform_file_name, os.listdir(local_transform_file_name)[0]
99
- )
100
- with open(local_transform_file_path, mode="r+b") as local_transform_file_obj:
101
- estimator = cp.load(local_transform_file_obj)
102
-
103
- argspec = inspect.getfullargspec(estimator.fit)
104
- args = {"X": df[input_cols]}
105
- if label_cols:
106
- label_arg_name = "Y" if "Y" in argspec.args else "y"
107
- args[label_arg_name] = df[label_cols].squeeze()
108
-
109
- if sample_weight_col is not None and "sample_weight" in argspec.args:
110
- args["sample_weight"] = df[sample_weight_col].squeeze()
111
-
112
- estimator.fit(**args)
113
-
114
- local_result_file_name = get_temp_file_path()
115
-
116
- with open(local_result_file_name, mode="w+b") as local_result_file_obj:
117
- cp.dump(estimator, local_result_file_obj)
118
-
119
- session.file.put(
120
- local_result_file_name,
121
- stage_result_file_name,
122
- auto_compress=False,
123
- overwrite=True,
124
- statement_params=statement_params,
125
- )
126
-
127
- # Note: you can add something like + "|" + str(df) to the return string
128
- # to pass debug information to the caller.
129
- return str(os.path.basename(local_result_file_name))
130
-
131
- return fit_wrapper_function
132
-
133
-
134
- class SklearnWrapperProvider(WrapperProvider):
135
- def __init__(self) -> None:
136
- import sklearn
137
-
138
- self.imports: List[str] = ["sklearn"]
139
-
140
- # TODO(snandamuri): Replace cloudpickle with joblib after latest version of joblib is added to snowflake conda.
141
- self.dependencies: List[str] = [
142
- f"numpy=={np.__version__}",
143
- f"scikit-learn=={sklearn.__version__}",
144
- f"cloudpickle=={cp.__version__}",
145
- ]
146
-
147
-
148
- class XGBoostWrapperProvider(WrapperProvider):
149
- def __init__(self) -> None:
150
- import xgboost
151
-
152
- self.imports: List[str] = ["xgboost"]
153
- self.dependencies = [
154
- f"numpy=={np.__version__}",
155
- f"xgboost=={xgboost.__version__}",
156
- f"cloudpickle=={cp.__version__}",
157
- ]
158
-
159
-
160
- class LightGBMWrapperProvider(WrapperProvider):
161
- def __init__(self) -> None:
162
- import lightgbm
163
-
164
- self.imports: List[str] = ["lightgbm"]
165
- self.dependencies = [
166
- f"numpy=={np.__version__}",
167
- f"lightgbm=={lightgbm.__version__}",
168
- f"cloudpickle=={cp.__version__}",
169
- ]
170
-
171
-
172
- class SklearnModelSelectionWrapperProvider(WrapperProvider):
173
- def __init__(self) -> None:
174
- import xgboost
175
-
176
- self.imports: List[str] = ["sklearn", "xgboost"]
177
- self.dependencies = [
178
- f"numpy=={np.__version__}",
179
- f"scikit-learn=={sklearn.__version__}",
180
- f"cloudpickle=={cp.__version__}",
181
- f"xgboost=={xgboost.__version__}",
182
- ]
183
-
184
- # Only include lightgbm in the dependencies if it is installed.
185
- try:
186
- import lightgbm
187
- except ModuleNotFoundError:
188
- pass
189
- else:
190
- self.imports.append("lightgbm")
191
- self.dependencies.append(f"lightgbm=={lightgbm.__version__}")
192
-
193
-
194
34
  def _get_rand_id() -> str:
195
35
  """
196
36
  Generate random id to be used in sproc and stage names.
@@ -202,171 +42,11 @@ def _get_rand_id() -> str:
202
42
 
203
43
 
204
44
  class SnowparkHandlers:
205
- def __init__(
206
- self, class_name: str, subproject: str, wrapper_provider: WrapperProvider, autogenerated: Optional[bool] = False
207
- ) -> None:
45
+ def __init__(self, class_name: str, subproject: str, autogenerated: Optional[bool] = False) -> None:
208
46
  self._class_name = class_name
209
47
  self._subproject = subproject
210
- self._wrapper_provider = wrapper_provider
211
48
  self._autogenerated = autogenerated
212
49
 
213
- def _get_fit_wrapper_sproc(
214
- self, dependencies: List[str], session: Session, statement_params: Dict[str, str]
215
- ) -> StoredProcedure:
216
- # If the sproc already exists, don't register.
217
- if not hasattr(session, "_FIT_WRAPPER_SPROCS"):
218
- session._FIT_WRAPPER_SPROCS: Dict[str, StoredProcedure] = {} # type: ignore[attr-defined, misc]
219
-
220
- fit_sproc_key = self._wrapper_provider.__class__.__name__
221
- if fit_sproc_key in session._FIT_WRAPPER_SPROCS: # type: ignore[attr-defined]
222
- fit_sproc: StoredProcedure = session._FIT_WRAPPER_SPROCS[fit_sproc_key] # type: ignore[attr-defined]
223
- return fit_sproc
224
-
225
- fit_sproc_name = random_name_for_temp_object(TempObjectType.PROCEDURE)
226
-
227
- fit_wrapper_sproc = session.sproc.register(
228
- func=self._wrapper_provider.get_fit_wrapper_function(),
229
- is_permanent=False,
230
- name=fit_sproc_name,
231
- packages=dependencies, # type: ignore[arg-type]
232
- replace=True,
233
- session=session,
234
- statement_params=statement_params,
235
- )
236
-
237
- session._FIT_WRAPPER_SPROCS[fit_sproc_key] = fit_wrapper_sproc # type: ignore[attr-defined]
238
-
239
- return fit_wrapper_sproc
240
-
241
- def fit_pandas(
242
- self,
243
- dataset: pd.DataFrame,
244
- estimator: object,
245
- input_cols: List[str],
246
- label_cols: Optional[List[str]],
247
- sample_weight_col: Optional[str],
248
- ) -> object:
249
- assert hasattr(estimator, "fit") # Keep mypy happy
250
- argspec = inspect.getfullargspec(estimator.fit)
251
- args = {"X": dataset[input_cols]}
252
-
253
- if label_cols:
254
- label_arg_name = "Y" if "Y" in argspec.args else "y"
255
- args[label_arg_name] = dataset[label_cols].squeeze()
256
-
257
- if sample_weight_col is not None and "sample_weight" in argspec.args:
258
- args["sample_weight"] = dataset[sample_weight_col].squeeze()
259
-
260
- return estimator.fit(**args)
261
-
262
- def fit_snowpark(
263
- self,
264
- dataset: DataFrame,
265
- session: Session,
266
- estimator: object,
267
- dependencies: List[str],
268
- input_cols: List[str],
269
- label_cols: List[str],
270
- sample_weight_col: Optional[str],
271
- ) -> Any:
272
- dataset = snowpark_dataframe_utils.cast_snowpark_dataframe_column_types(dataset)
273
-
274
- # If we are already in a stored procedure, no need to kick off another one.
275
- if SNOWML_SPROC_ENV in os.environ:
276
- statement_params = telemetry.get_function_usage_statement_params(
277
- project=_PROJECT,
278
- subproject=self._subproject,
279
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), self._class_name),
280
- api_calls=[Session.call],
281
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
282
- )
283
- pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
284
- pd_df.columns = dataset.columns
285
- return self.fit_pandas(pd_df, estimator, input_cols, label_cols, sample_weight_col)
286
-
287
- # Extract query that generated the dataframe. We will need to pass it to the fit procedure.
288
- queries = dataset.queries["queries"]
289
-
290
- # Create a temp file and dump the transform to that file.
291
- local_transform_file_name = get_temp_file_path()
292
- with open(local_transform_file_name, mode="w+b") as local_transform_file:
293
- cp.dump(estimator, local_transform_file)
294
-
295
- # Create temp stage to run fit.
296
- transform_stage_name = random_name_for_temp_object(TempObjectType.STAGE)
297
- stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
298
- SqlResultValidator(session=session, query=stage_creation_query).has_dimensions(
299
- expected_rows=1, expected_cols=1
300
- ).validate()
301
-
302
- # Use posixpath to construct stage paths
303
- stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
304
- stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
305
- local_result_file_name = get_temp_file_path()
306
-
307
- statement_params = telemetry.get_function_usage_statement_params(
308
- project=_PROJECT,
309
- subproject=self._subproject,
310
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), self._class_name),
311
- api_calls=[sproc],
312
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
- )
314
- # Put locally serialized transform on stage.
315
- session.file.put(
316
- local_transform_file_name,
317
- stage_transform_file_name,
318
- auto_compress=False,
319
- overwrite=True,
320
- statement_params=statement_params,
321
- )
322
-
323
- # Call fit sproc
324
- statement_params = telemetry.get_function_usage_statement_params(
325
- project=_PROJECT,
326
- subproject=self._subproject,
327
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), self._class_name),
328
- api_calls=[Session.call],
329
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
330
- )
331
-
332
- fit_wrapper_sproc = self._get_fit_wrapper_sproc(dependencies, session, statement_params)
333
-
334
- try:
335
- sproc_export_file_name: str = fit_wrapper_sproc(
336
- session,
337
- queries,
338
- stage_transform_file_name,
339
- stage_result_file_name,
340
- input_cols,
341
- label_cols,
342
- sample_weight_col,
343
- statement_params,
344
- )
345
- except snowpark_exceptions.SnowparkClientException as e:
346
- if "fit() missing 1 required positional argument: 'y'" in str(e):
347
- raise exceptions.SnowflakeMLException(
348
- error_code=error_codes.NOT_FOUND,
349
- original_exception=RuntimeError(modeling_error_messages.ATTRIBUTE_NOT_SET.format("label_cols")),
350
- ) from e
351
- raise e
352
-
353
- if "|" in sproc_export_file_name:
354
- fields = sproc_export_file_name.strip().split("|")
355
- sproc_export_file_name = fields[0]
356
-
357
- session.file.get(
358
- posixpath.join(stage_result_file_name, sproc_export_file_name),
359
- local_result_file_name,
360
- statement_params=statement_params,
361
- )
362
-
363
- with open(os.path.join(local_result_file_name, sproc_export_file_name), mode="r+b") as result_file_obj:
364
- fit_estimator = cp.load(result_file_obj)
365
-
366
- cleanup_temp_files([local_transform_file_name, local_result_file_name])
367
-
368
- return fit_estimator
369
-
370
50
  def batch_inference(
371
51
  self,
372
52
  dataset: DataFrame,
@@ -690,437 +370,3 @@ class SnowparkHandlers:
690
370
  cleanup_temp_files([local_score_file_name])
691
371
 
692
372
  return score
693
-
694
- def fit_search_snowpark(
695
- self,
696
- param_grid: Union[model_selection.ParameterGrid, model_selection.ParameterSampler],
697
- dataset: DataFrame,
698
- session: Session,
699
- estimator: Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV],
700
- dependencies: List[str],
701
- udf_imports: List[str],
702
- input_cols: List[str],
703
- label_cols: List[str],
704
- sample_weight_col: Optional[str],
705
- ) -> Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV]:
706
- from itertools import product
707
-
708
- import cachetools
709
- from sklearn.base import clone, is_classifier
710
- from sklearn.calibration import check_cv
711
-
712
- # Create one stage for data and for estimators.
713
- temp_stage_name = random_name_for_temp_object(TempObjectType.STAGE)
714
- temp_stage_creation_query = f"CREATE OR REPLACE TEMP STAGE {temp_stage_name};"
715
- session.sql(temp_stage_creation_query).collect()
716
-
717
- # Stage data.
718
- dataset = snowpark_dataframe_utils.cast_snowpark_dataframe(dataset)
719
- remote_file_path = f"{temp_stage_name}/{temp_stage_name}.parquet"
720
- dataset.write.copy_into_location( # type:ignore[call-overload]
721
- remote_file_path, file_format_type="parquet", header=True, overwrite=True
722
- )
723
- imports = [f"@{row.name}" for row in session.sql(f"LIST @{temp_stage_name}").collect()]
724
-
725
- # Store GridSearchCV's refit variable. If user set it as False, we don't need to refit it again
726
- original_refit = estimator.refit
727
-
728
- # Create a temp file and dump the estimator to that file.
729
- estimator_file_name = get_temp_file_path()
730
- params_to_evaluate = []
731
- for param_to_eval in list(param_grid):
732
- for k, v in param_to_eval.items():
733
- param_to_eval[k] = [v]
734
- params_to_evaluate.append([param_to_eval])
735
-
736
- with open(estimator_file_name, mode="w+b") as local_estimator_file_obj:
737
- # Set GridSearchCV refit as False and fit it again after retrieving the best param
738
- estimator.refit = False
739
- cp.dump(dict(estimator=estimator, param_grid=params_to_evaluate), local_estimator_file_obj)
740
- stage_estimator_file_name = posixpath.join(temp_stage_name, os.path.basename(estimator_file_name))
741
- sproc_statement_params = telemetry.get_function_usage_statement_params(
742
- project=_PROJECT,
743
- subproject=self._subproject,
744
- function_name=telemetry.get_statement_params_full_func_name(
745
- inspect.currentframe(), self.__class__.__name__
746
- ),
747
- api_calls=[sproc],
748
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
749
- )
750
- udtf_statement_params = telemetry.get_function_usage_statement_params(
751
- project=_PROJECT,
752
- subproject=self._subproject,
753
- function_name=telemetry.get_statement_params_full_func_name(
754
- inspect.currentframe(), self.__class__.__name__
755
- ),
756
- api_calls=[udtf],
757
- custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
758
- )
759
-
760
- # Put locally serialized estimator on stage.
761
- put_result = session.file.put(
762
- estimator_file_name,
763
- temp_stage_name,
764
- auto_compress=False,
765
- overwrite=True,
766
- )
767
- estimator_location = put_result[0].target
768
- imports.append(f"@{temp_stage_name}/{estimator_location}")
769
-
770
- search_sproc_name = random_name_for_temp_object(TempObjectType.PROCEDURE)
771
- random_udtf_name = random_name_for_temp_object(TempObjectType.FUNCTION)
772
-
773
- required_deps = dependencies + [
774
- "snowflake-snowpark-python<2",
775
- "fastparquet<2023.11",
776
- "pyarrow<14",
777
- "cachetools<5",
778
- ]
779
-
780
- @sproc( # type: ignore[misc]
781
- is_permanent=False,
782
- name=search_sproc_name,
783
- packages=required_deps, # type: ignore[arg-type]
784
- replace=True,
785
- session=session,
786
- anonymous=True,
787
- imports=imports, # type: ignore[arg-type]
788
- statement_params=sproc_statement_params,
789
- )
790
- def _distributed_search(
791
- session: Session,
792
- imports: List[str],
793
- stage_estimator_file_name: str,
794
- input_cols: List[str],
795
- label_cols: List[str],
796
- ) -> str:
797
- import os
798
- import time
799
- from typing import Iterator
800
-
801
- import cloudpickle as cp
802
- import pandas as pd
803
- import pyarrow.parquet as pq
804
- from sklearn.metrics import check_scoring
805
- from sklearn.metrics._scorer import _check_multimetric_scoring
806
-
807
- for import_name in udf_imports:
808
- importlib.import_module(import_name)
809
-
810
- data_files = [
811
- filename
812
- for filename in os.listdir(sys._xoptions["snowflake_import_directory"])
813
- if filename.startswith(temp_stage_name)
814
- ]
815
- partial_df = [
816
- pq.read_table(os.path.join(sys._xoptions["snowflake_import_directory"], file_name)).to_pandas()
817
- for file_name in data_files
818
- ]
819
- df = pd.concat(partial_df, ignore_index=True)
820
- df.columns = [identifier.get_inferred_name(col) for col in df.columns]
821
-
822
- X = df[input_cols]
823
- y = df[label_cols].squeeze()
824
-
825
- local_estimator_file_name = get_temp_file_path()
826
- session.file.get(stage_estimator_file_name, local_estimator_file_name)
827
-
828
- local_estimator_file_path = os.path.join(
829
- local_estimator_file_name, os.listdir(local_estimator_file_name)[0]
830
- )
831
- with open(local_estimator_file_path, mode="r+b") as local_estimator_file_obj:
832
- estimator = cp.load(local_estimator_file_obj)["estimator"]
833
-
834
- cv_orig = check_cv(estimator.cv, y, classifier=is_classifier(estimator.estimator))
835
- indices = [test for _, test in cv_orig.split(X, y)]
836
- local_indices_file_name = get_temp_file_path()
837
- with open(local_indices_file_name, mode="w+b") as local_indices_file_obj:
838
- cp.dump(indices, local_indices_file_obj)
839
-
840
- # Put locally serialized indices on stage.
841
- put_result = session.file.put(
842
- local_indices_file_name,
843
- temp_stage_name,
844
- auto_compress=False,
845
- overwrite=True,
846
- )
847
- indices_location = put_result[0].target
848
- imports.append(f"@{temp_stage_name}/{indices_location}")
849
- indices_len = len(indices)
850
-
851
- assert estimator is not None
852
-
853
- @cachetools.cached(cache={})
854
- def _load_data_into_udf() -> Tuple[
855
- Dict[str, pd.DataFrame],
856
- Union[model_selection.GridSearchCV, model_selection.RandomizedSearchCV],
857
- pd.DataFrame,
858
- int,
859
- List[Dict[str, Any]],
860
- ]:
861
- import pyarrow.parquet as pq
862
-
863
- data_files = [
864
- filename
865
- for filename in os.listdir(sys._xoptions["snowflake_import_directory"])
866
- if filename.startswith(temp_stage_name)
867
- ]
868
- partial_df = [
869
- pq.read_table(os.path.join(sys._xoptions["snowflake_import_directory"], file_name)).to_pandas()
870
- for file_name in data_files
871
- ]
872
- df = pd.concat(partial_df, ignore_index=True)
873
- df.columns = [identifier.get_inferred_name(col) for col in df.columns]
874
-
875
- # load estimator
876
- local_estimator_file_path = os.path.join(
877
- sys._xoptions["snowflake_import_directory"], f"{estimator_location}"
878
- )
879
- with open(local_estimator_file_path, mode="rb") as local_estimator_file_obj:
880
- estimator_objects = cp.load(local_estimator_file_obj)
881
- estimator = estimator_objects["estimator"]
882
- params_to_evaluate = estimator_objects["param_grid"]
883
-
884
- # load indices
885
- local_indices_file_path = os.path.join(
886
- sys._xoptions["snowflake_import_directory"], f"{indices_location}"
887
- )
888
- with open(local_indices_file_path, mode="rb") as local_indices_file_obj:
889
- indices = cp.load(local_indices_file_obj)
890
-
891
- argspec = inspect.getfullargspec(estimator.fit)
892
- args = {"X": df[input_cols]}
893
-
894
- if label_cols:
895
- label_arg_name = "Y" if "Y" in argspec.args else "y"
896
- args[label_arg_name] = df[label_cols].squeeze()
897
-
898
- if sample_weight_col is not None and "sample_weight" in argspec.args:
899
- args["sample_weight"] = df[sample_weight_col].squeeze()
900
- return args, estimator, indices, len(df), params_to_evaluate
901
-
902
- class SearchCV:
903
- def __init__(self) -> None:
904
- args, estimator, indices, data_length, params_to_evaluate = _load_data_into_udf()
905
- self.args = args
906
- self.estimator = estimator
907
- self.indices = indices
908
- self.data_length = data_length
909
- self.params_to_evaluate = params_to_evaluate
910
-
911
- def process(self, params_idx: int, idx: int) -> Iterator[Tuple[str]]:
912
- if hasattr(estimator, "param_grid"):
913
- self.estimator.param_grid = self.params_to_evaluate[params_idx]
914
- else:
915
- self.estimator.param_distributions = self.params_to_evaluate[params_idx]
916
- full_indices = np.array([i for i in range(self.data_length)])
917
- test_indice = self.indices[idx]
918
- train_indice = np.setdiff1d(full_indices, test_indice)
919
- self.estimator.cv = [(train_indice, test_indice)]
920
- self.estimator.fit(**self.args)
921
- binary_cv_results = None
922
- with io.BytesIO() as f:
923
- cp.dump(self.estimator.cv_results_, f)
924
- f.seek(0)
925
- binary_cv_results = f.getvalue().hex()
926
- yield (binary_cv_results,)
927
-
928
- def end_partition(self) -> None:
929
- ...
930
-
931
- session.udtf.register(
932
- SearchCV,
933
- output_schema=StructType([StructField("CV_RESULTS", StringType())]),
934
- input_types=[IntegerType(), IntegerType()],
935
- name=random_udtf_name,
936
- packages=required_deps, # type: ignore[arg-type]
937
- replace=True,
938
- is_permanent=False,
939
- imports=imports, # type: ignore[arg-type]
940
- statement_params=udtf_statement_params,
941
- )
942
-
943
- HP_TUNING = F.table_function(random_udtf_name)
944
-
945
- idx_length = int(indices_len)
946
- params_length = len(param_grid)
947
- idxs = [i for i in range(idx_length)]
948
- param_indices, training_indices = [], []
949
- for param_idx, cv_idx in product([param_index for param_index in range(params_length)], idxs):
950
- param_indices.append(param_idx)
951
- training_indices.append(cv_idx)
952
-
953
- pd_df = pd.DataFrame(
954
- {
955
- "PARAMS": param_indices,
956
- "TRAIN_IND": training_indices,
957
- "PARAM_INDEX": [i for i in range(idx_length * params_length)],
958
- }
959
- )
960
- df = session.create_dataframe(pd_df)
961
- results = df.select(
962
- F.cast(df["PARAM_INDEX"], IntegerType()).as_("PARAM_INDEX"),
963
- (HP_TUNING(df["PARAMS"], df["TRAIN_IND"]).over(partition_by=df["PARAM_INDEX"])),
964
- )
965
-
966
- # cv_result maintains the original order
967
- multimetric = False
968
- cv_results_ = dict()
969
- scorers = set()
970
- for i, val in enumerate(results.select("CV_RESULTS").sort(col("PARAM_INDEX")).collect()):
971
- # retrieved string had one more double quote in the front and end of the string.
972
- # use [1:-1] to remove the extra double quotes
973
- hex_str = bytes.fromhex(val[0])
974
- with io.BytesIO(hex_str) as f_reload:
975
- each_cv_result = cp.load(f_reload)
976
- for k, v in each_cv_result.items():
977
- cur_cv = i % idx_length
978
- key = k
979
- if "split0_test_" in k:
980
- # For multi-metric evaluation, the scores for all the scorers are available in the
981
- # cv_results_ dict at the keys ending with that scorer’s name ('_<scorer_name>')
982
- # instead of '_score'.
983
- scorers.add(k[len("split0_test_") :])
984
- key = k.replace("split0_test", f"split{cur_cv}_test")
985
- elif k.startswith("param"):
986
- if cur_cv != 0:
987
- key = False
988
- if key:
989
- if key not in cv_results_:
990
- cv_results_[key] = v
991
- else:
992
- cv_results_[key] = np.concatenate([cv_results_[key], v])
993
-
994
- multimetric = len(scorers) > 1
995
- # Use numpy to re-calculate all the information in cv_results_ again
996
- # Generally speaking, reshape all the results into the (scorers+2, idx_length, params_length) shape,
997
- # and average them by the idx_length;
998
- # idx_length is the number of cv folds; params_length is the number of parameter combinations
999
- scores = [
1000
- np.reshape(
1001
- np.concatenate([cv_results_[f"split{cur_cv}_test_{score}"] for cur_cv in range(idx_length)]),
1002
- (idx_length, -1),
1003
- )
1004
- for score in scorers
1005
- ]
1006
-
1007
- fit_score_test_matrix = np.stack(
1008
- [
1009
- np.reshape(cv_results_["mean_fit_time"], (idx_length, -1)),
1010
- np.reshape(cv_results_["mean_score_time"], (idx_length, -1)),
1011
- ]
1012
- + scores
1013
- )
1014
-
1015
- mean_fit_score_test_matrix = np.mean(fit_score_test_matrix, axis=1)
1016
- std_fit_score_test_matrix = np.std(fit_score_test_matrix, axis=1)
1017
- cv_results_["std_fit_time"] = std_fit_score_test_matrix[0]
1018
- cv_results_["mean_fit_time"] = mean_fit_score_test_matrix[0]
1019
- cv_results_["std_score_time"] = std_fit_score_test_matrix[1]
1020
- cv_results_["mean_score_time"] = mean_fit_score_test_matrix[1]
1021
- for idx, score in enumerate(scorers):
1022
- cv_results_[f"std_test_{score}"] = std_fit_score_test_matrix[idx + 2]
1023
- cv_results_[f"mean_test_{score}"] = mean_fit_score_test_matrix[idx + 2]
1024
- # re-compute the ranking again with mean_test_<score>.
1025
- cv_results_[f"rank_test_{score}"] = rankdata(-cv_results_[f"mean_test_{score}"], method="min")
1026
- # The best param is the highest ranking (which is 1) and we choose the first time ranking 1 appeared.
1027
- # If all scores are `nan`, `rankdata` will also produce an array of `nan` values.
1028
- # In that case, default to first index.
1029
- best_param_index = (
1030
- np.where(cv_results_[f"rank_test_{score}"] == 1)[0][0]
1031
- if not np.isnan(cv_results_[f"rank_test_{score}"]).all()
1032
- else 0
1033
- )
1034
-
1035
- estimator.cv_results_ = cv_results_
1036
- estimator.multimetric_ = multimetric
1037
-
1038
- # Reconstruct the sklearn estimator.
1039
- refit_metric = "score"
1040
- if callable(estimator.scoring):
1041
- scorers = estimator.scoring
1042
- elif estimator.scoring is None or isinstance(estimator.scoring, str):
1043
- scorers = check_scoring(estimator.estimator, estimator.scoring)
1044
- else:
1045
- scorers = _check_multimetric_scoring(estimator.estimator, estimator.scoring)
1046
- estimator._check_refit_for_multimetric(scorers)
1047
- refit_metric = original_refit
1048
-
1049
- estimator.scorer_ = scorers
1050
-
1051
- # check refit_metric now for a callabe scorer that is multimetric
1052
- if callable(estimator.scoring) and estimator.multimetric_:
1053
- refit_metric = original_refit
1054
-
1055
- # For multi-metric evaluation, store the best_index_, best_params_ and
1056
- # best_score_ iff refit is one of the scorer names
1057
- # In single metric evaluation, refit_metric is "score"
1058
- if original_refit or not estimator.multimetric_:
1059
- estimator.best_index_ = estimator._select_best_index(original_refit, refit_metric, cv_results_)
1060
- if not callable(original_refit):
1061
- # With a non-custom callable, we can select the best score
1062
- # based on the best index
1063
- estimator.best_score_ = cv_results_[f"mean_test_{refit_metric}"][estimator.best_index_]
1064
- estimator.best_params_ = cv_results_["params"][best_param_index]
1065
-
1066
- if original_refit:
1067
- estimator.best_estimator_ = clone(estimator.estimator).set_params(
1068
- **clone(estimator.best_params_, safe=False)
1069
- )
1070
-
1071
- # Let the sproc use all cores to refit.
1072
- estimator.n_jobs = -1 if not estimator.n_jobs else estimator.n_jobs
1073
-
1074
- # process the input as args
1075
- argspec = inspect.getfullargspec(estimator.fit)
1076
- args = {"X": X}
1077
- if label_cols:
1078
- label_arg_name = "Y" if "Y" in argspec.args else "y"
1079
- args[label_arg_name] = y
1080
- if sample_weight_col is not None and "sample_weight" in argspec.args:
1081
- args["sample_weight"] = df[sample_weight_col].squeeze()
1082
- estimator.refit = original_refit
1083
- refit_start_time = time.time()
1084
- estimator.best_estimator_.fit(**args)
1085
- refit_end_time = time.time()
1086
- estimator.refit_time_ = refit_end_time - refit_start_time
1087
-
1088
- if hasattr(estimator.best_estimator_, "feature_names_in_"):
1089
- estimator.feature_names_in_ = estimator.best_estimator_.feature_names_in_
1090
-
1091
- local_result_file_name = get_temp_file_path()
1092
-
1093
- with open(local_result_file_name, mode="w+b") as local_result_file_obj:
1094
- cp.dump(estimator, local_result_file_obj)
1095
-
1096
- session.file.put(
1097
- local_result_file_name,
1098
- temp_stage_name,
1099
- auto_compress=False,
1100
- overwrite=True,
1101
- )
1102
-
1103
- # Note: you can add something like + "|" + str(df) to the return string
1104
- # to pass debug information to the caller.
1105
- return str(os.path.basename(local_result_file_name))
1106
-
1107
- sproc_export_file_name = _distributed_search(
1108
- session,
1109
- imports,
1110
- stage_estimator_file_name,
1111
- input_cols,
1112
- label_cols,
1113
- )
1114
-
1115
- local_estimator_path = get_temp_file_path()
1116
- session.file.get(
1117
- posixpath.join(temp_stage_name, sproc_export_file_name),
1118
- local_estimator_path,
1119
- )
1120
-
1121
- with open(os.path.join(local_estimator_path, sproc_export_file_name), mode="r+b") as result_file_obj:
1122
- fit_estimator = cp.load(result_file_obj)
1123
-
1124
- cleanup_temp_files([local_estimator_path])
1125
-
1126
- return fit_estimator