snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class EllipticEnvelope(BaseTransformer):
57
58
  r"""An object for detecting outliers in a Gaussian distributed dataset
58
59
  For more details on this class, see [sklearn.covariance.EllipticEnvelope]
@@ -60,6 +61,49 @@ class EllipticEnvelope(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  store_precision: bool, default=True
64
108
  Specify if the estimated precision is stored.
65
109
 
@@ -86,35 +130,6 @@ class EllipticEnvelope(BaseTransformer):
86
130
  Determines the pseudo random number generator for shuffling
87
131
  the data. Pass an int for reproducible results across multiple function
88
132
  calls. See :term:`Glossary <random_state>`.
89
-
90
- input_cols: Optional[Union[str, List[str]]]
91
- A string or list of strings representing column names that contain features.
92
- If this parameter is not specified, all columns in the input DataFrame except
93
- the columns specified by label_cols and sample_weight_col parameters are
94
- considered input columns.
95
-
96
- label_cols: Optional[Union[str, List[str]]]
97
- A string or list of strings representing column names that contain labels.
98
- This is a required param for estimators, as there is no way to infer these
99
- columns. If this parameter is not specified, then object is fitted without
100
- labels (like a transformer).
101
-
102
- output_cols: Optional[Union[str, List[str]]]
103
- A string or list of strings representing column names that will store the
104
- output of predict and transform operations. The length of output_cols must
105
- match the expected number of output columns from the specific estimator or
106
- transformer class used.
107
- If this parameter is not specified, output column names are derived by
108
- adding an OUTPUT_ prefix to the label column names. These inferred output
109
- column names work for estimator's predict() method, but output_cols must
110
- be set explicitly for transformers.
111
-
112
- sample_weight_col: Optional[str]
113
- A string representing the column name containing the sample weights.
114
- This argument is only required when working with weighted datasets.
115
-
116
- drop_input_cols: Optional[bool], default=False
117
- If set, the response of predict(), transform() methods will not contain input columns.
118
133
  """
119
134
 
120
135
  def __init__( # type: ignore[no-untyped-def]
@@ -128,6 +143,7 @@ class EllipticEnvelope(BaseTransformer):
128
143
  input_cols: Optional[Union[str, Iterable[str]]] = None,
129
144
  output_cols: Optional[Union[str, Iterable[str]]] = None,
130
145
  label_cols: Optional[Union[str, Iterable[str]]] = None,
146
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
131
147
  drop_input_cols: Optional[bool] = False,
132
148
  sample_weight_col: Optional[str] = None,
133
149
  ) -> None:
@@ -136,9 +152,10 @@ class EllipticEnvelope(BaseTransformer):
136
152
  self.set_input_cols(input_cols)
137
153
  self.set_output_cols(output_cols)
138
154
  self.set_label_cols(label_cols)
155
+ self.set_passthrough_cols(passthrough_cols)
139
156
  self.set_drop_input_cols(drop_input_cols)
140
157
  self.set_sample_weight_col(sample_weight_col)
141
- deps = set(SklearnWrapperProvider().dependencies)
158
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
142
159
 
143
160
  self._deps = list(deps)
144
161
 
@@ -151,13 +168,14 @@ class EllipticEnvelope(BaseTransformer):
151
168
  args=init_args,
152
169
  klass=sklearn.covariance.EllipticEnvelope
153
170
  )
154
- self._sklearn_object = sklearn.covariance.EllipticEnvelope(
171
+ self._sklearn_object: Any = sklearn.covariance.EllipticEnvelope(
155
172
  **cleaned_up_init_args,
156
173
  )
157
174
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
158
175
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
159
176
  self._snowpark_cols: Optional[List[str]] = self.input_cols
160
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
177
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
178
+ self._autogenerated = True
161
179
 
162
180
  def _get_rand_id(self) -> str:
163
181
  """
@@ -168,24 +186,6 @@ class EllipticEnvelope(BaseTransformer):
168
186
  """
169
187
  return str(uuid4()).replace("-", "_").upper()
170
188
 
171
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
172
- """
173
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
174
-
175
- Args:
176
- dataset: Input dataset.
177
- """
178
- if not self.input_cols:
179
- cols = [
180
- c for c in dataset.columns
181
- if c not in self.get_label_cols() and c != self.sample_weight_col
182
- ]
183
- self.set_input_cols(input_cols=cols)
184
-
185
- if not self.output_cols:
186
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
187
- self.set_output_cols(output_cols=cols)
188
-
189
189
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "EllipticEnvelope":
190
190
  """
191
191
  Input columns setter.
@@ -231,54 +231,48 @@ class EllipticEnvelope(BaseTransformer):
231
231
  self
232
232
  """
233
233
  self._infer_input_output_cols(dataset)
234
- if isinstance(dataset, pd.DataFrame):
235
- assert self._sklearn_object is not None # keep mypy happy
236
- self._sklearn_object = self._handlers.fit_pandas(
237
- dataset,
238
- self._sklearn_object,
239
- self.input_cols,
240
- self.label_cols,
241
- self.sample_weight_col
242
- )
243
- elif isinstance(dataset, DataFrame):
244
- self._fit_snowpark(dataset)
245
- else:
246
- raise TypeError(
247
- f"Unexpected dataset type: {type(dataset)}."
248
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
249
- )
234
+ if isinstance(dataset, DataFrame):
235
+ session = dataset._session
236
+ assert session is not None # keep mypy happy
237
+ # Validate that key package version in user workspace are supported in snowflake conda channel
238
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
239
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
240
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
241
+
242
+ # Specify input columns so column pruning will be enforced
243
+ selected_cols = self._get_active_columns()
244
+ if len(selected_cols) > 0:
245
+ dataset = dataset.select(selected_cols)
246
+
247
+ self._snowpark_cols = dataset.select(self.input_cols).columns
248
+
249
+ # If we are already in a stored procedure, no need to kick off another one.
250
+ if SNOWML_SPROC_ENV in os.environ:
251
+ statement_params = telemetry.get_function_usage_statement_params(
252
+ project=_PROJECT,
253
+ subproject=_SUBPROJECT,
254
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
255
+ api_calls=[Session.call],
256
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
257
+ )
258
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
259
+ pd_df.columns = dataset.columns
260
+ dataset = pd_df
261
+
262
+ model_trainer = ModelTrainerBuilder.build(
263
+ estimator=self._sklearn_object,
264
+ dataset=dataset,
265
+ input_cols=self.input_cols,
266
+ label_cols=self.label_cols,
267
+ sample_weight_col=self.sample_weight_col,
268
+ autogenerated=self._autogenerated,
269
+ subproject=_SUBPROJECT
270
+ )
271
+ self._sklearn_object = model_trainer.train()
250
272
  self._is_fitted = True
251
273
  self._get_model_signatures(dataset)
252
274
  return self
253
275
 
254
- def _fit_snowpark(self, dataset: DataFrame) -> None:
255
- session = dataset._session
256
- assert session is not None # keep mypy happy
257
- # Validate that key package version in user workspace are supported in snowflake conda channel
258
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
259
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
260
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
261
-
262
- # Specify input columns so column pruning will be enforced
263
- selected_cols = self._get_active_columns()
264
- if len(selected_cols) > 0:
265
- dataset = dataset.select(selected_cols)
266
-
267
- estimator = self._sklearn_object
268
- assert estimator is not None # Keep mypy happy
269
-
270
- self._snowpark_cols = dataset.select(self.input_cols).columns
271
-
272
- self._sklearn_object = self._handlers.fit_snowpark(
273
- dataset,
274
- session,
275
- estimator,
276
- ["snowflake-snowpark-python"] + self._get_dependencies(),
277
- self.input_cols,
278
- self.label_cols,
279
- self.sample_weight_col,
280
- )
281
-
282
276
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
283
277
  if self._drop_input_cols:
284
278
  return []
@@ -466,11 +460,6 @@ class EllipticEnvelope(BaseTransformer):
466
460
  subproject=_SUBPROJECT,
467
461
  custom_tags=dict([("autogen", True)]),
468
462
  )
469
- @telemetry.add_stmt_params_to_df(
470
- project=_PROJECT,
471
- subproject=_SUBPROJECT,
472
- custom_tags=dict([("autogen", True)]),
473
- )
474
463
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
475
464
  """Predict labels (1 inlier, -1 outlier) of X according to fitted model
476
465
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.predict]
@@ -524,11 +513,6 @@ class EllipticEnvelope(BaseTransformer):
524
513
  subproject=_SUBPROJECT,
525
514
  custom_tags=dict([("autogen", True)]),
526
515
  )
527
- @telemetry.add_stmt_params_to_df(
528
- project=_PROJECT,
529
- subproject=_SUBPROJECT,
530
- custom_tags=dict([("autogen", True)]),
531
- )
532
516
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
533
517
  """Method not supported for this class.
534
518
 
@@ -587,7 +571,8 @@ class EllipticEnvelope(BaseTransformer):
587
571
  if False:
588
572
  self.fit(dataset)
589
573
  assert self._sklearn_object is not None
590
- return self._sklearn_object.labels_
574
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
575
+ return labels
591
576
  else:
592
577
  raise NotImplementedError
593
578
 
@@ -623,6 +608,7 @@ class EllipticEnvelope(BaseTransformer):
623
608
  output_cols = []
624
609
 
625
610
  # Make sure column names are valid snowflake identifiers.
611
+ assert output_cols is not None # Make MyPy happy
626
612
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
627
613
 
628
614
  return rv
@@ -633,11 +619,6 @@ class EllipticEnvelope(BaseTransformer):
633
619
  subproject=_SUBPROJECT,
634
620
  custom_tags=dict([("autogen", True)]),
635
621
  )
636
- @telemetry.add_stmt_params_to_df(
637
- project=_PROJECT,
638
- subproject=_SUBPROJECT,
639
- custom_tags=dict([("autogen", True)]),
640
- )
641
622
  def predict_proba(
642
623
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
643
624
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -678,11 +659,6 @@ class EllipticEnvelope(BaseTransformer):
678
659
  subproject=_SUBPROJECT,
679
660
  custom_tags=dict([("autogen", True)]),
680
661
  )
681
- @telemetry.add_stmt_params_to_df(
682
- project=_PROJECT,
683
- subproject=_SUBPROJECT,
684
- custom_tags=dict([("autogen", True)]),
685
- )
686
662
  def predict_log_proba(
687
663
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
688
664
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -719,16 +695,6 @@ class EllipticEnvelope(BaseTransformer):
719
695
  return output_df
720
696
 
721
697
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
722
- @telemetry.send_api_usage_telemetry(
723
- project=_PROJECT,
724
- subproject=_SUBPROJECT,
725
- custom_tags=dict([("autogen", True)]),
726
- )
727
- @telemetry.add_stmt_params_to_df(
728
- project=_PROJECT,
729
- subproject=_SUBPROJECT,
730
- custom_tags=dict([("autogen", True)]),
731
- )
732
698
  def decision_function(
733
699
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
734
700
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -831,11 +797,6 @@ class EllipticEnvelope(BaseTransformer):
831
797
  subproject=_SUBPROJECT,
832
798
  custom_tags=dict([("autogen", True)]),
833
799
  )
834
- @telemetry.add_stmt_params_to_df(
835
- project=_PROJECT,
836
- subproject=_SUBPROJECT,
837
- custom_tags=dict([("autogen", True)]),
838
- )
839
800
  def kneighbors(
840
801
  self,
841
802
  dataset: Union[DataFrame, pd.DataFrame],
@@ -895,18 +856,28 @@ class EllipticEnvelope(BaseTransformer):
895
856
  # For classifier, the type of predict is the same as the type of label
896
857
  if self._sklearn_object._estimator_type == 'classifier':
897
858
  # label columns is the desired type for output
898
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
859
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
899
860
  # rename the output columns
900
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
861
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
862
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
863
+ ([] if self._drop_input_cols else inputs)
864
+ + outputs)
865
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
866
+ # For outlier models, returns -1 for outliers and 1 for inliers.
867
+ # Clusterer returns int64 cluster labels.
868
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
869
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
901
870
  self._model_signature_dict["predict"] = ModelSignature(inputs,
902
871
  ([] if self._drop_input_cols else inputs)
903
872
  + outputs)
873
+
904
874
  # For regressor, the type of predict is float64
905
875
  elif self._sklearn_object._estimator_type == 'regressor':
906
876
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
907
877
  self._model_signature_dict["predict"] = ModelSignature(inputs,
908
878
  ([] if self._drop_input_cols else inputs)
909
879
  + outputs)
880
+
910
881
  for prob_func in PROB_FUNCTIONS:
911
882
  if hasattr(self, prob_func):
912
883
  output_cols_prefix: str = f"{prob_func}_"