snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class EllipticEnvelope(BaseTransformer):
|
57
58
|
r"""An object for detecting outliers in a Gaussian distributed dataset
|
58
59
|
For more details on this class, see [sklearn.covariance.EllipticEnvelope]
|
@@ -60,6 +61,49 @@ class EllipticEnvelope(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
store_precision: bool, default=True
|
64
108
|
Specify if the estimated precision is stored.
|
65
109
|
|
@@ -86,35 +130,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
86
130
|
Determines the pseudo random number generator for shuffling
|
87
131
|
the data. Pass an int for reproducible results across multiple function
|
88
132
|
calls. See :term:`Glossary <random_state>`.
|
89
|
-
|
90
|
-
input_cols: Optional[Union[str, List[str]]]
|
91
|
-
A string or list of strings representing column names that contain features.
|
92
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
93
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
94
|
-
considered input columns.
|
95
|
-
|
96
|
-
label_cols: Optional[Union[str, List[str]]]
|
97
|
-
A string or list of strings representing column names that contain labels.
|
98
|
-
This is a required param for estimators, as there is no way to infer these
|
99
|
-
columns. If this parameter is not specified, then object is fitted without
|
100
|
-
labels (like a transformer).
|
101
|
-
|
102
|
-
output_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that will store the
|
104
|
-
output of predict and transform operations. The length of output_cols must
|
105
|
-
match the expected number of output columns from the specific estimator or
|
106
|
-
transformer class used.
|
107
|
-
If this parameter is not specified, output column names are derived by
|
108
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
109
|
-
column names work for estimator's predict() method, but output_cols must
|
110
|
-
be set explicitly for transformers.
|
111
|
-
|
112
|
-
sample_weight_col: Optional[str]
|
113
|
-
A string representing the column name containing the sample weights.
|
114
|
-
This argument is only required when working with weighted datasets.
|
115
|
-
|
116
|
-
drop_input_cols: Optional[bool], default=False
|
117
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
118
133
|
"""
|
119
134
|
|
120
135
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -128,6 +143,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
128
143
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
129
144
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
130
145
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
146
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
131
147
|
drop_input_cols: Optional[bool] = False,
|
132
148
|
sample_weight_col: Optional[str] = None,
|
133
149
|
) -> None:
|
@@ -136,9 +152,10 @@ class EllipticEnvelope(BaseTransformer):
|
|
136
152
|
self.set_input_cols(input_cols)
|
137
153
|
self.set_output_cols(output_cols)
|
138
154
|
self.set_label_cols(label_cols)
|
155
|
+
self.set_passthrough_cols(passthrough_cols)
|
139
156
|
self.set_drop_input_cols(drop_input_cols)
|
140
157
|
self.set_sample_weight_col(sample_weight_col)
|
141
|
-
deps = set(
|
158
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
142
159
|
|
143
160
|
self._deps = list(deps)
|
144
161
|
|
@@ -151,13 +168,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
151
168
|
args=init_args,
|
152
169
|
klass=sklearn.covariance.EllipticEnvelope
|
153
170
|
)
|
154
|
-
self._sklearn_object = sklearn.covariance.EllipticEnvelope(
|
171
|
+
self._sklearn_object: Any = sklearn.covariance.EllipticEnvelope(
|
155
172
|
**cleaned_up_init_args,
|
156
173
|
)
|
157
174
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
158
175
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
159
176
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
160
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
177
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=EllipticEnvelope.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
178
|
+
self._autogenerated = True
|
161
179
|
|
162
180
|
def _get_rand_id(self) -> str:
|
163
181
|
"""
|
@@ -168,24 +186,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
168
186
|
"""
|
169
187
|
return str(uuid4()).replace("-", "_").upper()
|
170
188
|
|
171
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
172
|
-
"""
|
173
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
174
|
-
|
175
|
-
Args:
|
176
|
-
dataset: Input dataset.
|
177
|
-
"""
|
178
|
-
if not self.input_cols:
|
179
|
-
cols = [
|
180
|
-
c for c in dataset.columns
|
181
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
182
|
-
]
|
183
|
-
self.set_input_cols(input_cols=cols)
|
184
|
-
|
185
|
-
if not self.output_cols:
|
186
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
187
|
-
self.set_output_cols(output_cols=cols)
|
188
|
-
|
189
189
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "EllipticEnvelope":
|
190
190
|
"""
|
191
191
|
Input columns setter.
|
@@ -231,54 +231,48 @@ class EllipticEnvelope(BaseTransformer):
|
|
231
231
|
self
|
232
232
|
"""
|
233
233
|
self._infer_input_output_cols(dataset)
|
234
|
-
if isinstance(dataset,
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
self.
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
234
|
+
if isinstance(dataset, DataFrame):
|
235
|
+
session = dataset._session
|
236
|
+
assert session is not None # keep mypy happy
|
237
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
238
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
239
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
240
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
241
|
+
|
242
|
+
# Specify input columns so column pruning will be enforced
|
243
|
+
selected_cols = self._get_active_columns()
|
244
|
+
if len(selected_cols) > 0:
|
245
|
+
dataset = dataset.select(selected_cols)
|
246
|
+
|
247
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
248
|
+
|
249
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
250
|
+
if SNOWML_SPROC_ENV in os.environ:
|
251
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
252
|
+
project=_PROJECT,
|
253
|
+
subproject=_SUBPROJECT,
|
254
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
|
255
|
+
api_calls=[Session.call],
|
256
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
257
|
+
)
|
258
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
259
|
+
pd_df.columns = dataset.columns
|
260
|
+
dataset = pd_df
|
261
|
+
|
262
|
+
model_trainer = ModelTrainerBuilder.build(
|
263
|
+
estimator=self._sklearn_object,
|
264
|
+
dataset=dataset,
|
265
|
+
input_cols=self.input_cols,
|
266
|
+
label_cols=self.label_cols,
|
267
|
+
sample_weight_col=self.sample_weight_col,
|
268
|
+
autogenerated=self._autogenerated,
|
269
|
+
subproject=_SUBPROJECT
|
270
|
+
)
|
271
|
+
self._sklearn_object = model_trainer.train()
|
250
272
|
self._is_fitted = True
|
251
273
|
self._get_model_signatures(dataset)
|
252
274
|
return self
|
253
275
|
|
254
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
255
|
-
session = dataset._session
|
256
|
-
assert session is not None # keep mypy happy
|
257
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
258
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
259
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
260
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
261
|
-
|
262
|
-
# Specify input columns so column pruning will be enforced
|
263
|
-
selected_cols = self._get_active_columns()
|
264
|
-
if len(selected_cols) > 0:
|
265
|
-
dataset = dataset.select(selected_cols)
|
266
|
-
|
267
|
-
estimator = self._sklearn_object
|
268
|
-
assert estimator is not None # Keep mypy happy
|
269
|
-
|
270
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
|
-
|
272
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
273
|
-
dataset,
|
274
|
-
session,
|
275
|
-
estimator,
|
276
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
277
|
-
self.input_cols,
|
278
|
-
self.label_cols,
|
279
|
-
self.sample_weight_col,
|
280
|
-
)
|
281
|
-
|
282
276
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
283
277
|
if self._drop_input_cols:
|
284
278
|
return []
|
@@ -466,11 +460,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
466
460
|
subproject=_SUBPROJECT,
|
467
461
|
custom_tags=dict([("autogen", True)]),
|
468
462
|
)
|
469
|
-
@telemetry.add_stmt_params_to_df(
|
470
|
-
project=_PROJECT,
|
471
|
-
subproject=_SUBPROJECT,
|
472
|
-
custom_tags=dict([("autogen", True)]),
|
473
|
-
)
|
474
463
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
475
464
|
"""Predict labels (1 inlier, -1 outlier) of X according to fitted model
|
476
465
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.predict]
|
@@ -524,11 +513,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
524
513
|
subproject=_SUBPROJECT,
|
525
514
|
custom_tags=dict([("autogen", True)]),
|
526
515
|
)
|
527
|
-
@telemetry.add_stmt_params_to_df(
|
528
|
-
project=_PROJECT,
|
529
|
-
subproject=_SUBPROJECT,
|
530
|
-
custom_tags=dict([("autogen", True)]),
|
531
|
-
)
|
532
516
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
533
517
|
"""Method not supported for this class.
|
534
518
|
|
@@ -587,7 +571,8 @@ class EllipticEnvelope(BaseTransformer):
|
|
587
571
|
if False:
|
588
572
|
self.fit(dataset)
|
589
573
|
assert self._sklearn_object is not None
|
590
|
-
|
574
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
575
|
+
return labels
|
591
576
|
else:
|
592
577
|
raise NotImplementedError
|
593
578
|
|
@@ -623,6 +608,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
623
608
|
output_cols = []
|
624
609
|
|
625
610
|
# Make sure column names are valid snowflake identifiers.
|
611
|
+
assert output_cols is not None # Make MyPy happy
|
626
612
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
627
613
|
|
628
614
|
return rv
|
@@ -633,11 +619,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
633
619
|
subproject=_SUBPROJECT,
|
634
620
|
custom_tags=dict([("autogen", True)]),
|
635
621
|
)
|
636
|
-
@telemetry.add_stmt_params_to_df(
|
637
|
-
project=_PROJECT,
|
638
|
-
subproject=_SUBPROJECT,
|
639
|
-
custom_tags=dict([("autogen", True)]),
|
640
|
-
)
|
641
622
|
def predict_proba(
|
642
623
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
643
624
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -678,11 +659,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
678
659
|
subproject=_SUBPROJECT,
|
679
660
|
custom_tags=dict([("autogen", True)]),
|
680
661
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
662
|
def predict_log_proba(
|
687
663
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
688
664
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -719,16 +695,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
719
695
|
return output_df
|
720
696
|
|
721
697
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
722
|
-
@telemetry.send_api_usage_telemetry(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
|
-
@telemetry.add_stmt_params_to_df(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
698
|
def decision_function(
|
733
699
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
734
700
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -831,11 +797,6 @@ class EllipticEnvelope(BaseTransformer):
|
|
831
797
|
subproject=_SUBPROJECT,
|
832
798
|
custom_tags=dict([("autogen", True)]),
|
833
799
|
)
|
834
|
-
@telemetry.add_stmt_params_to_df(
|
835
|
-
project=_PROJECT,
|
836
|
-
subproject=_SUBPROJECT,
|
837
|
-
custom_tags=dict([("autogen", True)]),
|
838
|
-
)
|
839
800
|
def kneighbors(
|
840
801
|
self,
|
841
802
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -895,18 +856,28 @@ class EllipticEnvelope(BaseTransformer):
|
|
895
856
|
# For classifier, the type of predict is the same as the type of label
|
896
857
|
if self._sklearn_object._estimator_type == 'classifier':
|
897
858
|
# label columns is the desired type for output
|
898
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
859
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
899
860
|
# rename the output columns
|
900
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
861
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
862
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
863
|
+
([] if self._drop_input_cols else inputs)
|
864
|
+
+ outputs)
|
865
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
866
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
867
|
+
# Clusterer returns int64 cluster labels.
|
868
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
869
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
901
870
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
902
871
|
([] if self._drop_input_cols else inputs)
|
903
872
|
+ outputs)
|
873
|
+
|
904
874
|
# For regressor, the type of predict is float64
|
905
875
|
elif self._sklearn_object._estimator_type == 'regressor':
|
906
876
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
907
877
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
908
878
|
([] if self._drop_input_cols else inputs)
|
909
879
|
+ outputs)
|
880
|
+
|
910
881
|
for prob_func in PROB_FUNCTIONS:
|
911
882
|
if hasattr(self, prob_func):
|
912
883
|
output_cols_prefix: str = f"{prob_func}_"
|