snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class XGBRegressor(BaseTransformer):
56
57
  r"""Implementation of the scikit-learn API for XGBoost regression
57
58
  For more details on this class, see [xgboost.XGBRegressor]
@@ -60,7 +61,51 @@ class XGBRegressor(BaseTransformer):
60
61
  Parameters
61
62
  ----------
62
63
 
63
- n_estimators: int
64
+ input_cols: Optional[Union[str, List[str]]]
65
+ A string or list of strings representing column names that contain features.
66
+ If this parameter is not specified, all columns in the input DataFrame except
67
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
71
+ label_cols: Optional[Union[str, List[str]]]
72
+ A string or list of strings representing column names that contain labels.
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
108
+ n_estimators: int
64
109
  Number of gradient boosted trees. Equivalent to number of boosting
65
110
  rounds.
66
111
 
@@ -268,35 +313,6 @@ class XGBRegressor(BaseTransformer):
268
313
  The value of the gradient for each sample point.
269
314
  hess: array_like of shape [n_samples]
270
315
  The value of the second derivative for each sample point
271
-
272
- input_cols: Optional[Union[str, List[str]]]
273
- A string or list of strings representing column names that contain features.
274
- If this parameter is not specified, all columns in the input DataFrame except
275
- the columns specified by label_cols and sample_weight_col parameters are
276
- considered input columns.
277
-
278
- label_cols: Optional[Union[str, List[str]]]
279
- A string or list of strings representing column names that contain labels.
280
- This is a required param for estimators, as there is no way to infer these
281
- columns. If this parameter is not specified, then object is fitted without
282
- labels (like a transformer).
283
-
284
- output_cols: Optional[Union[str, List[str]]]
285
- A string or list of strings representing column names that will store the
286
- output of predict and transform operations. The length of output_cols must
287
- match the expected number of output columns from the specific estimator or
288
- transformer class used.
289
- If this parameter is not specified, output column names are derived by
290
- adding an OUTPUT_ prefix to the label column names. These inferred output
291
- column names work for estimator's predict() method, but output_cols must
292
- be set explicitly for transformers.
293
-
294
- sample_weight_col: Optional[str]
295
- A string representing the column name containing the sample weights.
296
- This argument is only required when working with weighted datasets.
297
-
298
- drop_input_cols: Optional[bool], default=False
299
- If set, the response of predict(), transform() methods will not contain input columns.
300
316
  """
301
317
 
302
318
  def __init__( # type: ignore[no-untyped-def]
@@ -306,6 +322,7 @@ class XGBRegressor(BaseTransformer):
306
322
  input_cols: Optional[Union[str, Iterable[str]]] = None,
307
323
  output_cols: Optional[Union[str, Iterable[str]]] = None,
308
324
  label_cols: Optional[Union[str, Iterable[str]]] = None,
325
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
309
326
  drop_input_cols: Optional[bool] = False,
310
327
  sample_weight_col: Optional[str] = None,
311
328
  **kwargs,
@@ -315,9 +332,10 @@ class XGBRegressor(BaseTransformer):
315
332
  self.set_input_cols(input_cols)
316
333
  self.set_output_cols(output_cols)
317
334
  self.set_label_cols(label_cols)
335
+ self.set_passthrough_cols(passthrough_cols)
318
336
  self.set_drop_input_cols(drop_input_cols)
319
337
  self.set_sample_weight_col(sample_weight_col)
320
- deps = set(XGBoostWrapperProvider().dependencies)
338
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
321
339
 
322
340
  self._deps = list(deps)
323
341
 
@@ -326,14 +344,15 @@ class XGBRegressor(BaseTransformer):
326
344
  args=init_args,
327
345
  klass=xgboost.XGBRegressor
328
346
  )
329
- self._sklearn_object = xgboost.XGBRegressor(
347
+ self._sklearn_object: Any = xgboost.XGBRegressor(
330
348
  **cleaned_up_init_args,
331
349
  **kwargs,
332
350
  )
333
351
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
334
352
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
335
353
  self._snowpark_cols: Optional[List[str]] = self.input_cols
336
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=XGBoostWrapperProvider())
354
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
355
+ self._autogenerated = True
337
356
 
338
357
  def _get_rand_id(self) -> str:
339
358
  """
@@ -344,24 +363,6 @@ class XGBRegressor(BaseTransformer):
344
363
  """
345
364
  return str(uuid4()).replace("-", "_").upper()
346
365
 
347
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
348
- """
349
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
350
-
351
- Args:
352
- dataset: Input dataset.
353
- """
354
- if not self.input_cols:
355
- cols = [
356
- c for c in dataset.columns
357
- if c not in self.get_label_cols() and c != self.sample_weight_col
358
- ]
359
- self.set_input_cols(input_cols=cols)
360
-
361
- if not self.output_cols:
362
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
363
- self.set_output_cols(output_cols=cols)
364
-
365
366
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBRegressor":
366
367
  """
367
368
  Input columns setter.
@@ -407,54 +408,48 @@ class XGBRegressor(BaseTransformer):
407
408
  self
408
409
  """
409
410
  self._infer_input_output_cols(dataset)
410
- if isinstance(dataset, pd.DataFrame):
411
- assert self._sklearn_object is not None # keep mypy happy
412
- self._sklearn_object = self._handlers.fit_pandas(
413
- dataset,
414
- self._sklearn_object,
415
- self.input_cols,
416
- self.label_cols,
417
- self.sample_weight_col
418
- )
419
- elif isinstance(dataset, DataFrame):
420
- self._fit_snowpark(dataset)
421
- else:
422
- raise TypeError(
423
- f"Unexpected dataset type: {type(dataset)}."
424
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
425
- )
411
+ if isinstance(dataset, DataFrame):
412
+ session = dataset._session
413
+ assert session is not None # keep mypy happy
414
+ # Validate that key package version in user workspace are supported in snowflake conda channel
415
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
416
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
417
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
418
+
419
+ # Specify input columns so column pruning will be enforced
420
+ selected_cols = self._get_active_columns()
421
+ if len(selected_cols) > 0:
422
+ dataset = dataset.select(selected_cols)
423
+
424
+ self._snowpark_cols = dataset.select(self.input_cols).columns
425
+
426
+ # If we are already in a stored procedure, no need to kick off another one.
427
+ if SNOWML_SPROC_ENV in os.environ:
428
+ statement_params = telemetry.get_function_usage_statement_params(
429
+ project=_PROJECT,
430
+ subproject=_SUBPROJECT,
431
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRegressor.__class__.__name__),
432
+ api_calls=[Session.call],
433
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
434
+ )
435
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
436
+ pd_df.columns = dataset.columns
437
+ dataset = pd_df
438
+
439
+ model_trainer = ModelTrainerBuilder.build(
440
+ estimator=self._sklearn_object,
441
+ dataset=dataset,
442
+ input_cols=self.input_cols,
443
+ label_cols=self.label_cols,
444
+ sample_weight_col=self.sample_weight_col,
445
+ autogenerated=self._autogenerated,
446
+ subproject=_SUBPROJECT
447
+ )
448
+ self._sklearn_object = model_trainer.train()
426
449
  self._is_fitted = True
427
450
  self._get_model_signatures(dataset)
428
451
  return self
429
452
 
430
- def _fit_snowpark(self, dataset: DataFrame) -> None:
431
- session = dataset._session
432
- assert session is not None # keep mypy happy
433
- # Validate that key package version in user workspace are supported in snowflake conda channel
434
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
435
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
436
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
437
-
438
- # Specify input columns so column pruning will be enforced
439
- selected_cols = self._get_active_columns()
440
- if len(selected_cols) > 0:
441
- dataset = dataset.select(selected_cols)
442
-
443
- estimator = self._sklearn_object
444
- assert estimator is not None # Keep mypy happy
445
-
446
- self._snowpark_cols = dataset.select(self.input_cols).columns
447
-
448
- self._sklearn_object = self._handlers.fit_snowpark(
449
- dataset,
450
- session,
451
- estimator,
452
- ["snowflake-snowpark-python"] + self._get_dependencies(),
453
- self.input_cols,
454
- self.label_cols,
455
- self.sample_weight_col,
456
- )
457
-
458
453
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
459
454
  if self._drop_input_cols:
460
455
  return []
@@ -642,11 +637,6 @@ class XGBRegressor(BaseTransformer):
642
637
  subproject=_SUBPROJECT,
643
638
  custom_tags=dict([("autogen", True)]),
644
639
  )
645
- @telemetry.add_stmt_params_to_df(
646
- project=_PROJECT,
647
- subproject=_SUBPROJECT,
648
- custom_tags=dict([("autogen", True)]),
649
- )
650
640
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
651
641
  """Predict with `X`
652
642
  For more details on this function, see [xgboost.XGBRegressor.predict]
@@ -700,11 +690,6 @@ class XGBRegressor(BaseTransformer):
700
690
  subproject=_SUBPROJECT,
701
691
  custom_tags=dict([("autogen", True)]),
702
692
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
693
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
709
694
  """Method not supported for this class.
710
695
 
@@ -761,7 +746,8 @@ class XGBRegressor(BaseTransformer):
761
746
  if False:
762
747
  self.fit(dataset)
763
748
  assert self._sklearn_object is not None
764
- return self._sklearn_object.labels_
749
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
750
+ return labels
765
751
  else:
766
752
  raise NotImplementedError
767
753
 
@@ -797,6 +783,7 @@ class XGBRegressor(BaseTransformer):
797
783
  output_cols = []
798
784
 
799
785
  # Make sure column names are valid snowflake identifiers.
786
+ assert output_cols is not None # Make MyPy happy
800
787
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
801
788
 
802
789
  return rv
@@ -807,11 +794,6 @@ class XGBRegressor(BaseTransformer):
807
794
  subproject=_SUBPROJECT,
808
795
  custom_tags=dict([("autogen", True)]),
809
796
  )
810
- @telemetry.add_stmt_params_to_df(
811
- project=_PROJECT,
812
- subproject=_SUBPROJECT,
813
- custom_tags=dict([("autogen", True)]),
814
- )
815
797
  def predict_proba(
816
798
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
817
799
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -852,11 +834,6 @@ class XGBRegressor(BaseTransformer):
852
834
  subproject=_SUBPROJECT,
853
835
  custom_tags=dict([("autogen", True)]),
854
836
  )
855
- @telemetry.add_stmt_params_to_df(
856
- project=_PROJECT,
857
- subproject=_SUBPROJECT,
858
- custom_tags=dict([("autogen", True)]),
859
- )
860
837
  def predict_log_proba(
861
838
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
862
839
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -893,16 +870,6 @@ class XGBRegressor(BaseTransformer):
893
870
  return output_df
894
871
 
895
872
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
896
- @telemetry.send_api_usage_telemetry(
897
- project=_PROJECT,
898
- subproject=_SUBPROJECT,
899
- custom_tags=dict([("autogen", True)]),
900
- )
901
- @telemetry.add_stmt_params_to_df(
902
- project=_PROJECT,
903
- subproject=_SUBPROJECT,
904
- custom_tags=dict([("autogen", True)]),
905
- )
906
873
  def decision_function(
907
874
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
908
875
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -1003,11 +970,6 @@ class XGBRegressor(BaseTransformer):
1003
970
  subproject=_SUBPROJECT,
1004
971
  custom_tags=dict([("autogen", True)]),
1005
972
  )
1006
- @telemetry.add_stmt_params_to_df(
1007
- project=_PROJECT,
1008
- subproject=_SUBPROJECT,
1009
- custom_tags=dict([("autogen", True)]),
1010
- )
1011
973
  def kneighbors(
1012
974
  self,
1013
975
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1067,18 +1029,28 @@ class XGBRegressor(BaseTransformer):
1067
1029
  # For classifier, the type of predict is the same as the type of label
1068
1030
  if self._sklearn_object._estimator_type == 'classifier':
1069
1031
  # label columns is the desired type for output
1070
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1032
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1071
1033
  # rename the output columns
1072
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1034
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1035
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1036
+ ([] if self._drop_input_cols else inputs)
1037
+ + outputs)
1038
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1039
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1040
+ # Clusterer returns int64 cluster labels.
1041
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1042
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1073
1043
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1074
1044
  ([] if self._drop_input_cols else inputs)
1075
1045
  + outputs)
1046
+
1076
1047
  # For regressor, the type of predict is float64
1077
1048
  elif self._sklearn_object._estimator_type == 'regressor':
1078
1049
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1079
1050
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1080
1051
  ([] if self._drop_input_cols else inputs)
1081
1052
  + outputs)
1053
+
1082
1054
  for prob_func in PROB_FUNCTIONS:
1083
1055
  if hasattr(self, prob_func):
1084
1056
  output_cols_prefix: str = f"{prob_func}_"