snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRegressor(BaseTransformer):
|
56
57
|
r"""Implementation of the scikit-learn API for XGBoost regression
|
57
58
|
For more details on this class, see [xgboost.XGBRegressor]
|
@@ -60,7 +61,51 @@ class XGBRegressor(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of gradient boosted trees. Equivalent to number of boosting
|
65
110
|
rounds.
|
66
111
|
|
@@ -268,35 +313,6 @@ class XGBRegressor(BaseTransformer):
|
|
268
313
|
The value of the gradient for each sample point.
|
269
314
|
hess: array_like of shape [n_samples]
|
270
315
|
The value of the second derivative for each sample point
|
271
|
-
|
272
|
-
input_cols: Optional[Union[str, List[str]]]
|
273
|
-
A string or list of strings representing column names that contain features.
|
274
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
275
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
276
|
-
considered input columns.
|
277
|
-
|
278
|
-
label_cols: Optional[Union[str, List[str]]]
|
279
|
-
A string or list of strings representing column names that contain labels.
|
280
|
-
This is a required param for estimators, as there is no way to infer these
|
281
|
-
columns. If this parameter is not specified, then object is fitted without
|
282
|
-
labels (like a transformer).
|
283
|
-
|
284
|
-
output_cols: Optional[Union[str, List[str]]]
|
285
|
-
A string or list of strings representing column names that will store the
|
286
|
-
output of predict and transform operations. The length of output_cols must
|
287
|
-
match the expected number of output columns from the specific estimator or
|
288
|
-
transformer class used.
|
289
|
-
If this parameter is not specified, output column names are derived by
|
290
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
291
|
-
column names work for estimator's predict() method, but output_cols must
|
292
|
-
be set explicitly for transformers.
|
293
|
-
|
294
|
-
sample_weight_col: Optional[str]
|
295
|
-
A string representing the column name containing the sample weights.
|
296
|
-
This argument is only required when working with weighted datasets.
|
297
|
-
|
298
|
-
drop_input_cols: Optional[bool], default=False
|
299
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
300
316
|
"""
|
301
317
|
|
302
318
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -306,6 +322,7 @@ class XGBRegressor(BaseTransformer):
|
|
306
322
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
307
323
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
308
324
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
325
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
309
326
|
drop_input_cols: Optional[bool] = False,
|
310
327
|
sample_weight_col: Optional[str] = None,
|
311
328
|
**kwargs,
|
@@ -315,9 +332,10 @@ class XGBRegressor(BaseTransformer):
|
|
315
332
|
self.set_input_cols(input_cols)
|
316
333
|
self.set_output_cols(output_cols)
|
317
334
|
self.set_label_cols(label_cols)
|
335
|
+
self.set_passthrough_cols(passthrough_cols)
|
318
336
|
self.set_drop_input_cols(drop_input_cols)
|
319
337
|
self.set_sample_weight_col(sample_weight_col)
|
320
|
-
deps = set(
|
338
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
321
339
|
|
322
340
|
self._deps = list(deps)
|
323
341
|
|
@@ -326,14 +344,15 @@ class XGBRegressor(BaseTransformer):
|
|
326
344
|
args=init_args,
|
327
345
|
klass=xgboost.XGBRegressor
|
328
346
|
)
|
329
|
-
self._sklearn_object = xgboost.XGBRegressor(
|
347
|
+
self._sklearn_object: Any = xgboost.XGBRegressor(
|
330
348
|
**cleaned_up_init_args,
|
331
349
|
**kwargs,
|
332
350
|
)
|
333
351
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
334
352
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
335
353
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
336
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
354
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
355
|
+
self._autogenerated = True
|
337
356
|
|
338
357
|
def _get_rand_id(self) -> str:
|
339
358
|
"""
|
@@ -344,24 +363,6 @@ class XGBRegressor(BaseTransformer):
|
|
344
363
|
"""
|
345
364
|
return str(uuid4()).replace("-", "_").upper()
|
346
365
|
|
347
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
348
|
-
"""
|
349
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
350
|
-
|
351
|
-
Args:
|
352
|
-
dataset: Input dataset.
|
353
|
-
"""
|
354
|
-
if not self.input_cols:
|
355
|
-
cols = [
|
356
|
-
c for c in dataset.columns
|
357
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
358
|
-
]
|
359
|
-
self.set_input_cols(input_cols=cols)
|
360
|
-
|
361
|
-
if not self.output_cols:
|
362
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
363
|
-
self.set_output_cols(output_cols=cols)
|
364
|
-
|
365
366
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBRegressor":
|
366
367
|
"""
|
367
368
|
Input columns setter.
|
@@ -407,54 +408,48 @@ class XGBRegressor(BaseTransformer):
|
|
407
408
|
self
|
408
409
|
"""
|
409
410
|
self._infer_input_output_cols(dataset)
|
410
|
-
if isinstance(dataset,
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
self.
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
411
|
+
if isinstance(dataset, DataFrame):
|
412
|
+
session = dataset._session
|
413
|
+
assert session is not None # keep mypy happy
|
414
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
415
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
416
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
417
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
418
|
+
|
419
|
+
# Specify input columns so column pruning will be enforced
|
420
|
+
selected_cols = self._get_active_columns()
|
421
|
+
if len(selected_cols) > 0:
|
422
|
+
dataset = dataset.select(selected_cols)
|
423
|
+
|
424
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
425
|
+
|
426
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
427
|
+
if SNOWML_SPROC_ENV in os.environ:
|
428
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
429
|
+
project=_PROJECT,
|
430
|
+
subproject=_SUBPROJECT,
|
431
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRegressor.__class__.__name__),
|
432
|
+
api_calls=[Session.call],
|
433
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
434
|
+
)
|
435
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
436
|
+
pd_df.columns = dataset.columns
|
437
|
+
dataset = pd_df
|
438
|
+
|
439
|
+
model_trainer = ModelTrainerBuilder.build(
|
440
|
+
estimator=self._sklearn_object,
|
441
|
+
dataset=dataset,
|
442
|
+
input_cols=self.input_cols,
|
443
|
+
label_cols=self.label_cols,
|
444
|
+
sample_weight_col=self.sample_weight_col,
|
445
|
+
autogenerated=self._autogenerated,
|
446
|
+
subproject=_SUBPROJECT
|
447
|
+
)
|
448
|
+
self._sklearn_object = model_trainer.train()
|
426
449
|
self._is_fitted = True
|
427
450
|
self._get_model_signatures(dataset)
|
428
451
|
return self
|
429
452
|
|
430
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
431
|
-
session = dataset._session
|
432
|
-
assert session is not None # keep mypy happy
|
433
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
434
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
435
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
436
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
437
|
-
|
438
|
-
# Specify input columns so column pruning will be enforced
|
439
|
-
selected_cols = self._get_active_columns()
|
440
|
-
if len(selected_cols) > 0:
|
441
|
-
dataset = dataset.select(selected_cols)
|
442
|
-
|
443
|
-
estimator = self._sklearn_object
|
444
|
-
assert estimator is not None # Keep mypy happy
|
445
|
-
|
446
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
447
|
-
|
448
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
449
|
-
dataset,
|
450
|
-
session,
|
451
|
-
estimator,
|
452
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
453
|
-
self.input_cols,
|
454
|
-
self.label_cols,
|
455
|
-
self.sample_weight_col,
|
456
|
-
)
|
457
|
-
|
458
453
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
459
454
|
if self._drop_input_cols:
|
460
455
|
return []
|
@@ -642,11 +637,6 @@ class XGBRegressor(BaseTransformer):
|
|
642
637
|
subproject=_SUBPROJECT,
|
643
638
|
custom_tags=dict([("autogen", True)]),
|
644
639
|
)
|
645
|
-
@telemetry.add_stmt_params_to_df(
|
646
|
-
project=_PROJECT,
|
647
|
-
subproject=_SUBPROJECT,
|
648
|
-
custom_tags=dict([("autogen", True)]),
|
649
|
-
)
|
650
640
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
651
641
|
"""Predict with `X`
|
652
642
|
For more details on this function, see [xgboost.XGBRegressor.predict]
|
@@ -700,11 +690,6 @@ class XGBRegressor(BaseTransformer):
|
|
700
690
|
subproject=_SUBPROJECT,
|
701
691
|
custom_tags=dict([("autogen", True)]),
|
702
692
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
693
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
709
694
|
"""Method not supported for this class.
|
710
695
|
|
@@ -761,7 +746,8 @@ class XGBRegressor(BaseTransformer):
|
|
761
746
|
if False:
|
762
747
|
self.fit(dataset)
|
763
748
|
assert self._sklearn_object is not None
|
764
|
-
|
749
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
750
|
+
return labels
|
765
751
|
else:
|
766
752
|
raise NotImplementedError
|
767
753
|
|
@@ -797,6 +783,7 @@ class XGBRegressor(BaseTransformer):
|
|
797
783
|
output_cols = []
|
798
784
|
|
799
785
|
# Make sure column names are valid snowflake identifiers.
|
786
|
+
assert output_cols is not None # Make MyPy happy
|
800
787
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
801
788
|
|
802
789
|
return rv
|
@@ -807,11 +794,6 @@ class XGBRegressor(BaseTransformer):
|
|
807
794
|
subproject=_SUBPROJECT,
|
808
795
|
custom_tags=dict([("autogen", True)]),
|
809
796
|
)
|
810
|
-
@telemetry.add_stmt_params_to_df(
|
811
|
-
project=_PROJECT,
|
812
|
-
subproject=_SUBPROJECT,
|
813
|
-
custom_tags=dict([("autogen", True)]),
|
814
|
-
)
|
815
797
|
def predict_proba(
|
816
798
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
817
799
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -852,11 +834,6 @@ class XGBRegressor(BaseTransformer):
|
|
852
834
|
subproject=_SUBPROJECT,
|
853
835
|
custom_tags=dict([("autogen", True)]),
|
854
836
|
)
|
855
|
-
@telemetry.add_stmt_params_to_df(
|
856
|
-
project=_PROJECT,
|
857
|
-
subproject=_SUBPROJECT,
|
858
|
-
custom_tags=dict([("autogen", True)]),
|
859
|
-
)
|
860
837
|
def predict_log_proba(
|
861
838
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
862
839
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -893,16 +870,6 @@ class XGBRegressor(BaseTransformer):
|
|
893
870
|
return output_df
|
894
871
|
|
895
872
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
896
|
-
@telemetry.send_api_usage_telemetry(
|
897
|
-
project=_PROJECT,
|
898
|
-
subproject=_SUBPROJECT,
|
899
|
-
custom_tags=dict([("autogen", True)]),
|
900
|
-
)
|
901
|
-
@telemetry.add_stmt_params_to_df(
|
902
|
-
project=_PROJECT,
|
903
|
-
subproject=_SUBPROJECT,
|
904
|
-
custom_tags=dict([("autogen", True)]),
|
905
|
-
)
|
906
873
|
def decision_function(
|
907
874
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
908
875
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -1003,11 +970,6 @@ class XGBRegressor(BaseTransformer):
|
|
1003
970
|
subproject=_SUBPROJECT,
|
1004
971
|
custom_tags=dict([("autogen", True)]),
|
1005
972
|
)
|
1006
|
-
@telemetry.add_stmt_params_to_df(
|
1007
|
-
project=_PROJECT,
|
1008
|
-
subproject=_SUBPROJECT,
|
1009
|
-
custom_tags=dict([("autogen", True)]),
|
1010
|
-
)
|
1011
973
|
def kneighbors(
|
1012
974
|
self,
|
1013
975
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1067,18 +1029,28 @@ class XGBRegressor(BaseTransformer):
|
|
1067
1029
|
# For classifier, the type of predict is the same as the type of label
|
1068
1030
|
if self._sklearn_object._estimator_type == 'classifier':
|
1069
1031
|
# label columns is the desired type for output
|
1070
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1032
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1071
1033
|
# rename the output columns
|
1072
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1034
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1035
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1036
|
+
([] if self._drop_input_cols else inputs)
|
1037
|
+
+ outputs)
|
1038
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1039
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1040
|
+
# Clusterer returns int64 cluster labels.
|
1041
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1042
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1073
1043
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1074
1044
|
([] if self._drop_input_cols else inputs)
|
1075
1045
|
+ outputs)
|
1046
|
+
|
1076
1047
|
# For regressor, the type of predict is float64
|
1077
1048
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1078
1049
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1079
1050
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1080
1051
|
([] if self._drop_input_cols else inputs)
|
1081
1052
|
+ outputs)
|
1053
|
+
|
1082
1054
|
for prob_func in PROB_FUNCTIONS:
|
1083
1055
|
if hasattr(self, prob_func):
|
1084
1056
|
output_cols_prefix: str = f"{prob_func}_"
|