snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AgglomerativeClustering(BaseTransformer):
57
58
  r"""Agglomerative Clustering
58
59
  For more details on this class, see [sklearn.cluster.AgglomerativeClustering]
@@ -60,6 +61,49 @@ class AgglomerativeClustering(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int or None, default=2
64
108
  The number of clusters to find. It must be ``None`` if
65
109
  ``distance_threshold`` is not ``None``.
@@ -127,35 +171,6 @@ class AgglomerativeClustering(BaseTransformer):
127
171
  Computes distances between clusters even if `distance_threshold` is not
128
172
  used. This can be used to make dendrogram visualization, but introduces
129
173
  a computational and memory overhead.
130
-
131
- input_cols: Optional[Union[str, List[str]]]
132
- A string or list of strings representing column names that contain features.
133
- If this parameter is not specified, all columns in the input DataFrame except
134
- the columns specified by label_cols and sample_weight_col parameters are
135
- considered input columns.
136
-
137
- label_cols: Optional[Union[str, List[str]]]
138
- A string or list of strings representing column names that contain labels.
139
- This is a required param for estimators, as there is no way to infer these
140
- columns. If this parameter is not specified, then object is fitted without
141
- labels (like a transformer).
142
-
143
- output_cols: Optional[Union[str, List[str]]]
144
- A string or list of strings representing column names that will store the
145
- output of predict and transform operations. The length of output_cols must
146
- match the expected number of output columns from the specific estimator or
147
- transformer class used.
148
- If this parameter is not specified, output column names are derived by
149
- adding an OUTPUT_ prefix to the label column names. These inferred output
150
- column names work for estimator's predict() method, but output_cols must
151
- be set explicitly for transformers.
152
-
153
- sample_weight_col: Optional[str]
154
- A string representing the column name containing the sample weights.
155
- This argument is only required when working with weighted datasets.
156
-
157
- drop_input_cols: Optional[bool], default=False
158
- If set, the response of predict(), transform() methods will not contain input columns.
159
174
  """
160
175
 
161
176
  def __init__( # type: ignore[no-untyped-def]
@@ -173,6 +188,7 @@ class AgglomerativeClustering(BaseTransformer):
173
188
  input_cols: Optional[Union[str, Iterable[str]]] = None,
174
189
  output_cols: Optional[Union[str, Iterable[str]]] = None,
175
190
  label_cols: Optional[Union[str, Iterable[str]]] = None,
191
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
176
192
  drop_input_cols: Optional[bool] = False,
177
193
  sample_weight_col: Optional[str] = None,
178
194
  ) -> None:
@@ -181,9 +197,10 @@ class AgglomerativeClustering(BaseTransformer):
181
197
  self.set_input_cols(input_cols)
182
198
  self.set_output_cols(output_cols)
183
199
  self.set_label_cols(label_cols)
200
+ self.set_passthrough_cols(passthrough_cols)
184
201
  self.set_drop_input_cols(drop_input_cols)
185
202
  self.set_sample_weight_col(sample_weight_col)
186
- deps = set(SklearnWrapperProvider().dependencies)
203
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
187
204
 
188
205
  self._deps = list(deps)
189
206
 
@@ -200,13 +217,14 @@ class AgglomerativeClustering(BaseTransformer):
200
217
  args=init_args,
201
218
  klass=sklearn.cluster.AgglomerativeClustering
202
219
  )
203
- self._sklearn_object = sklearn.cluster.AgglomerativeClustering(
220
+ self._sklearn_object: Any = sklearn.cluster.AgglomerativeClustering(
204
221
  **cleaned_up_init_args,
205
222
  )
206
223
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
207
224
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
208
225
  self._snowpark_cols: Optional[List[str]] = self.input_cols
209
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
226
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
227
+ self._autogenerated = True
210
228
 
211
229
  def _get_rand_id(self) -> str:
212
230
  """
@@ -217,24 +235,6 @@ class AgglomerativeClustering(BaseTransformer):
217
235
  """
218
236
  return str(uuid4()).replace("-", "_").upper()
219
237
 
220
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
221
- """
222
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
223
-
224
- Args:
225
- dataset: Input dataset.
226
- """
227
- if not self.input_cols:
228
- cols = [
229
- c for c in dataset.columns
230
- if c not in self.get_label_cols() and c != self.sample_weight_col
231
- ]
232
- self.set_input_cols(input_cols=cols)
233
-
234
- if not self.output_cols:
235
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
236
- self.set_output_cols(output_cols=cols)
237
-
238
238
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AgglomerativeClustering":
239
239
  """
240
240
  Input columns setter.
@@ -280,54 +280,48 @@ class AgglomerativeClustering(BaseTransformer):
280
280
  self
281
281
  """
282
282
  self._infer_input_output_cols(dataset)
283
- if isinstance(dataset, pd.DataFrame):
284
- assert self._sklearn_object is not None # keep mypy happy
285
- self._sklearn_object = self._handlers.fit_pandas(
286
- dataset,
287
- self._sklearn_object,
288
- self.input_cols,
289
- self.label_cols,
290
- self.sample_weight_col
291
- )
292
- elif isinstance(dataset, DataFrame):
293
- self._fit_snowpark(dataset)
294
- else:
295
- raise TypeError(
296
- f"Unexpected dataset type: {type(dataset)}."
297
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
298
- )
283
+ if isinstance(dataset, DataFrame):
284
+ session = dataset._session
285
+ assert session is not None # keep mypy happy
286
+ # Validate that key package version in user workspace are supported in snowflake conda channel
287
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
288
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
289
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
290
+
291
+ # Specify input columns so column pruning will be enforced
292
+ selected_cols = self._get_active_columns()
293
+ if len(selected_cols) > 0:
294
+ dataset = dataset.select(selected_cols)
295
+
296
+ self._snowpark_cols = dataset.select(self.input_cols).columns
297
+
298
+ # If we are already in a stored procedure, no need to kick off another one.
299
+ if SNOWML_SPROC_ENV in os.environ:
300
+ statement_params = telemetry.get_function_usage_statement_params(
301
+ project=_PROJECT,
302
+ subproject=_SUBPROJECT,
303
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AgglomerativeClustering.__class__.__name__),
304
+ api_calls=[Session.call],
305
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
+ )
307
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
308
+ pd_df.columns = dataset.columns
309
+ dataset = pd_df
310
+
311
+ model_trainer = ModelTrainerBuilder.build(
312
+ estimator=self._sklearn_object,
313
+ dataset=dataset,
314
+ input_cols=self.input_cols,
315
+ label_cols=self.label_cols,
316
+ sample_weight_col=self.sample_weight_col,
317
+ autogenerated=self._autogenerated,
318
+ subproject=_SUBPROJECT
319
+ )
320
+ self._sklearn_object = model_trainer.train()
299
321
  self._is_fitted = True
300
322
  self._get_model_signatures(dataset)
301
323
  return self
302
324
 
303
- def _fit_snowpark(self, dataset: DataFrame) -> None:
304
- session = dataset._session
305
- assert session is not None # keep mypy happy
306
- # Validate that key package version in user workspace are supported in snowflake conda channel
307
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
308
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
309
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
310
-
311
- # Specify input columns so column pruning will be enforced
312
- selected_cols = self._get_active_columns()
313
- if len(selected_cols) > 0:
314
- dataset = dataset.select(selected_cols)
315
-
316
- estimator = self._sklearn_object
317
- assert estimator is not None # Keep mypy happy
318
-
319
- self._snowpark_cols = dataset.select(self.input_cols).columns
320
-
321
- self._sklearn_object = self._handlers.fit_snowpark(
322
- dataset,
323
- session,
324
- estimator,
325
- ["snowflake-snowpark-python"] + self._get_dependencies(),
326
- self.input_cols,
327
- self.label_cols,
328
- self.sample_weight_col,
329
- )
330
-
331
325
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
332
326
  if self._drop_input_cols:
333
327
  return []
@@ -515,11 +509,6 @@ class AgglomerativeClustering(BaseTransformer):
515
509
  subproject=_SUBPROJECT,
516
510
  custom_tags=dict([("autogen", True)]),
517
511
  )
518
- @telemetry.add_stmt_params_to_df(
519
- project=_PROJECT,
520
- subproject=_SUBPROJECT,
521
- custom_tags=dict([("autogen", True)]),
522
- )
523
512
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
524
513
  """Method not supported for this class.
525
514
 
@@ -571,11 +560,6 @@ class AgglomerativeClustering(BaseTransformer):
571
560
  subproject=_SUBPROJECT,
572
561
  custom_tags=dict([("autogen", True)]),
573
562
  )
574
- @telemetry.add_stmt_params_to_df(
575
- project=_PROJECT,
576
- subproject=_SUBPROJECT,
577
- custom_tags=dict([("autogen", True)]),
578
- )
579
563
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
580
564
  """Method not supported for this class.
581
565
 
@@ -634,7 +618,8 @@ class AgglomerativeClustering(BaseTransformer):
634
618
  if True:
635
619
  self.fit(dataset)
636
620
  assert self._sklearn_object is not None
637
- return self._sklearn_object.labels_
621
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
622
+ return labels
638
623
  else:
639
624
  raise NotImplementedError
640
625
 
@@ -670,6 +655,7 @@ class AgglomerativeClustering(BaseTransformer):
670
655
  output_cols = []
671
656
 
672
657
  # Make sure column names are valid snowflake identifiers.
658
+ assert output_cols is not None # Make MyPy happy
673
659
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
674
660
 
675
661
  return rv
@@ -680,11 +666,6 @@ class AgglomerativeClustering(BaseTransformer):
680
666
  subproject=_SUBPROJECT,
681
667
  custom_tags=dict([("autogen", True)]),
682
668
  )
683
- @telemetry.add_stmt_params_to_df(
684
- project=_PROJECT,
685
- subproject=_SUBPROJECT,
686
- custom_tags=dict([("autogen", True)]),
687
- )
688
669
  def predict_proba(
689
670
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
690
671
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -725,11 +706,6 @@ class AgglomerativeClustering(BaseTransformer):
725
706
  subproject=_SUBPROJECT,
726
707
  custom_tags=dict([("autogen", True)]),
727
708
  )
728
- @telemetry.add_stmt_params_to_df(
729
- project=_PROJECT,
730
- subproject=_SUBPROJECT,
731
- custom_tags=dict([("autogen", True)]),
732
- )
733
709
  def predict_log_proba(
734
710
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
735
711
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -766,16 +742,6 @@ class AgglomerativeClustering(BaseTransformer):
766
742
  return output_df
767
743
 
768
744
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
769
- @telemetry.send_api_usage_telemetry(
770
- project=_PROJECT,
771
- subproject=_SUBPROJECT,
772
- custom_tags=dict([("autogen", True)]),
773
- )
774
- @telemetry.add_stmt_params_to_df(
775
- project=_PROJECT,
776
- subproject=_SUBPROJECT,
777
- custom_tags=dict([("autogen", True)]),
778
- )
779
745
  def decision_function(
780
746
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
781
747
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -874,11 +840,6 @@ class AgglomerativeClustering(BaseTransformer):
874
840
  subproject=_SUBPROJECT,
875
841
  custom_tags=dict([("autogen", True)]),
876
842
  )
877
- @telemetry.add_stmt_params_to_df(
878
- project=_PROJECT,
879
- subproject=_SUBPROJECT,
880
- custom_tags=dict([("autogen", True)]),
881
- )
882
843
  def kneighbors(
883
844
  self,
884
845
  dataset: Union[DataFrame, pd.DataFrame],
@@ -938,18 +899,28 @@ class AgglomerativeClustering(BaseTransformer):
938
899
  # For classifier, the type of predict is the same as the type of label
939
900
  if self._sklearn_object._estimator_type == 'classifier':
940
901
  # label columns is the desired type for output
941
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
902
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
942
903
  # rename the output columns
943
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
904
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
905
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
906
+ ([] if self._drop_input_cols else inputs)
907
+ + outputs)
908
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
909
+ # For outlier models, returns -1 for outliers and 1 for inliers.
910
+ # Clusterer returns int64 cluster labels.
911
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
912
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
944
913
  self._model_signature_dict["predict"] = ModelSignature(inputs,
945
914
  ([] if self._drop_input_cols else inputs)
946
915
  + outputs)
916
+
947
917
  # For regressor, the type of predict is float64
948
918
  elif self._sklearn_object._estimator_type == 'regressor':
949
919
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
950
920
  self._model_signature_dict["predict"] = ModelSignature(inputs,
951
921
  ([] if self._drop_input_cols else inputs)
952
922
  + outputs)
923
+
953
924
  for prob_func in PROB_FUNCTIONS:
954
925
  if hasattr(self, prob_func):
955
926
  output_cols_prefix: str = f"{prob_func}_"