snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Isomap(BaseTransformer):
|
57
58
|
r"""Isomap Embedding
|
58
59
|
For more details on this class, see [sklearn.manifold.Isomap]
|
@@ -60,6 +61,49 @@ class Isomap(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_neighbors: int or None, default=5
|
64
108
|
Number of neighbors to consider for each point. If `n_neighbors` is an int,
|
65
109
|
then `radius` must be `None`.
|
@@ -124,35 +168,6 @@ class Isomap(BaseTransformer):
|
|
124
168
|
|
125
169
|
metric_params: dict, default=None
|
126
170
|
Additional keyword arguments for the metric function.
|
127
|
-
|
128
|
-
input_cols: Optional[Union[str, List[str]]]
|
129
|
-
A string or list of strings representing column names that contain features.
|
130
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
131
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
132
|
-
considered input columns.
|
133
|
-
|
134
|
-
label_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain labels.
|
136
|
-
This is a required param for estimators, as there is no way to infer these
|
137
|
-
columns. If this parameter is not specified, then object is fitted without
|
138
|
-
labels (like a transformer).
|
139
|
-
|
140
|
-
output_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that will store the
|
142
|
-
output of predict and transform operations. The length of output_cols must
|
143
|
-
match the expected number of output columns from the specific estimator or
|
144
|
-
transformer class used.
|
145
|
-
If this parameter is not specified, output column names are derived by
|
146
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
147
|
-
column names work for estimator's predict() method, but output_cols must
|
148
|
-
be set explicitly for transformers.
|
149
|
-
|
150
|
-
sample_weight_col: Optional[str]
|
151
|
-
A string representing the column name containing the sample weights.
|
152
|
-
This argument is only required when working with weighted datasets.
|
153
|
-
|
154
|
-
drop_input_cols: Optional[bool], default=False
|
155
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
156
171
|
"""
|
157
172
|
|
158
173
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -173,6 +188,7 @@ class Isomap(BaseTransformer):
|
|
173
188
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
174
189
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
175
190
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
191
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
176
192
|
drop_input_cols: Optional[bool] = False,
|
177
193
|
sample_weight_col: Optional[str] = None,
|
178
194
|
) -> None:
|
@@ -181,9 +197,10 @@ class Isomap(BaseTransformer):
|
|
181
197
|
self.set_input_cols(input_cols)
|
182
198
|
self.set_output_cols(output_cols)
|
183
199
|
self.set_label_cols(label_cols)
|
200
|
+
self.set_passthrough_cols(passthrough_cols)
|
184
201
|
self.set_drop_input_cols(drop_input_cols)
|
185
202
|
self.set_sample_weight_col(sample_weight_col)
|
186
|
-
deps = set(
|
203
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
187
204
|
|
188
205
|
self._deps = list(deps)
|
189
206
|
|
@@ -203,13 +220,14 @@ class Isomap(BaseTransformer):
|
|
203
220
|
args=init_args,
|
204
221
|
klass=sklearn.manifold.Isomap
|
205
222
|
)
|
206
|
-
self._sklearn_object = sklearn.manifold.Isomap(
|
223
|
+
self._sklearn_object: Any = sklearn.manifold.Isomap(
|
207
224
|
**cleaned_up_init_args,
|
208
225
|
)
|
209
226
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
210
227
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
211
228
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
212
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
229
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
230
|
+
self._autogenerated = True
|
213
231
|
|
214
232
|
def _get_rand_id(self) -> str:
|
215
233
|
"""
|
@@ -220,24 +238,6 @@ class Isomap(BaseTransformer):
|
|
220
238
|
"""
|
221
239
|
return str(uuid4()).replace("-", "_").upper()
|
222
240
|
|
223
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
224
|
-
"""
|
225
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
226
|
-
|
227
|
-
Args:
|
228
|
-
dataset: Input dataset.
|
229
|
-
"""
|
230
|
-
if not self.input_cols:
|
231
|
-
cols = [
|
232
|
-
c for c in dataset.columns
|
233
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
234
|
-
]
|
235
|
-
self.set_input_cols(input_cols=cols)
|
236
|
-
|
237
|
-
if not self.output_cols:
|
238
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
239
|
-
self.set_output_cols(output_cols=cols)
|
240
|
-
|
241
241
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Isomap":
|
242
242
|
"""
|
243
243
|
Input columns setter.
|
@@ -283,54 +283,48 @@ class Isomap(BaseTransformer):
|
|
283
283
|
self
|
284
284
|
"""
|
285
285
|
self._infer_input_output_cols(dataset)
|
286
|
-
if isinstance(dataset,
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
self.
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
286
|
+
if isinstance(dataset, DataFrame):
|
287
|
+
session = dataset._session
|
288
|
+
assert session is not None # keep mypy happy
|
289
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
290
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
291
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
292
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
293
|
+
|
294
|
+
# Specify input columns so column pruning will be enforced
|
295
|
+
selected_cols = self._get_active_columns()
|
296
|
+
if len(selected_cols) > 0:
|
297
|
+
dataset = dataset.select(selected_cols)
|
298
|
+
|
299
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
300
|
+
|
301
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
302
|
+
if SNOWML_SPROC_ENV in os.environ:
|
303
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
304
|
+
project=_PROJECT,
|
305
|
+
subproject=_SUBPROJECT,
|
306
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Isomap.__class__.__name__),
|
307
|
+
api_calls=[Session.call],
|
308
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
309
|
+
)
|
310
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
|
+
pd_df.columns = dataset.columns
|
312
|
+
dataset = pd_df
|
313
|
+
|
314
|
+
model_trainer = ModelTrainerBuilder.build(
|
315
|
+
estimator=self._sklearn_object,
|
316
|
+
dataset=dataset,
|
317
|
+
input_cols=self.input_cols,
|
318
|
+
label_cols=self.label_cols,
|
319
|
+
sample_weight_col=self.sample_weight_col,
|
320
|
+
autogenerated=self._autogenerated,
|
321
|
+
subproject=_SUBPROJECT
|
322
|
+
)
|
323
|
+
self._sklearn_object = model_trainer.train()
|
302
324
|
self._is_fitted = True
|
303
325
|
self._get_model_signatures(dataset)
|
304
326
|
return self
|
305
327
|
|
306
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
307
|
-
session = dataset._session
|
308
|
-
assert session is not None # keep mypy happy
|
309
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
310
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
311
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
312
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
313
|
-
|
314
|
-
# Specify input columns so column pruning will be enforced
|
315
|
-
selected_cols = self._get_active_columns()
|
316
|
-
if len(selected_cols) > 0:
|
317
|
-
dataset = dataset.select(selected_cols)
|
318
|
-
|
319
|
-
estimator = self._sklearn_object
|
320
|
-
assert estimator is not None # Keep mypy happy
|
321
|
-
|
322
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
323
|
-
|
324
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
325
|
-
dataset,
|
326
|
-
session,
|
327
|
-
estimator,
|
328
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
329
|
-
self.input_cols,
|
330
|
-
self.label_cols,
|
331
|
-
self.sample_weight_col,
|
332
|
-
)
|
333
|
-
|
334
328
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
335
329
|
if self._drop_input_cols:
|
336
330
|
return []
|
@@ -518,11 +512,6 @@ class Isomap(BaseTransformer):
|
|
518
512
|
subproject=_SUBPROJECT,
|
519
513
|
custom_tags=dict([("autogen", True)]),
|
520
514
|
)
|
521
|
-
@telemetry.add_stmt_params_to_df(
|
522
|
-
project=_PROJECT,
|
523
|
-
subproject=_SUBPROJECT,
|
524
|
-
custom_tags=dict([("autogen", True)]),
|
525
|
-
)
|
526
515
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
527
516
|
"""Method not supported for this class.
|
528
517
|
|
@@ -574,11 +563,6 @@ class Isomap(BaseTransformer):
|
|
574
563
|
subproject=_SUBPROJECT,
|
575
564
|
custom_tags=dict([("autogen", True)]),
|
576
565
|
)
|
577
|
-
@telemetry.add_stmt_params_to_df(
|
578
|
-
project=_PROJECT,
|
579
|
-
subproject=_SUBPROJECT,
|
580
|
-
custom_tags=dict([("autogen", True)]),
|
581
|
-
)
|
582
566
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
583
567
|
"""Transform X
|
584
568
|
For more details on this function, see [sklearn.manifold.Isomap.transform]
|
@@ -637,7 +621,8 @@ class Isomap(BaseTransformer):
|
|
637
621
|
if False:
|
638
622
|
self.fit(dataset)
|
639
623
|
assert self._sklearn_object is not None
|
640
|
-
|
624
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
625
|
+
return labels
|
641
626
|
else:
|
642
627
|
raise NotImplementedError
|
643
628
|
|
@@ -673,6 +658,7 @@ class Isomap(BaseTransformer):
|
|
673
658
|
output_cols = []
|
674
659
|
|
675
660
|
# Make sure column names are valid snowflake identifiers.
|
661
|
+
assert output_cols is not None # Make MyPy happy
|
676
662
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
677
663
|
|
678
664
|
return rv
|
@@ -683,11 +669,6 @@ class Isomap(BaseTransformer):
|
|
683
669
|
subproject=_SUBPROJECT,
|
684
670
|
custom_tags=dict([("autogen", True)]),
|
685
671
|
)
|
686
|
-
@telemetry.add_stmt_params_to_df(
|
687
|
-
project=_PROJECT,
|
688
|
-
subproject=_SUBPROJECT,
|
689
|
-
custom_tags=dict([("autogen", True)]),
|
690
|
-
)
|
691
672
|
def predict_proba(
|
692
673
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
693
674
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -728,11 +709,6 @@ class Isomap(BaseTransformer):
|
|
728
709
|
subproject=_SUBPROJECT,
|
729
710
|
custom_tags=dict([("autogen", True)]),
|
730
711
|
)
|
731
|
-
@telemetry.add_stmt_params_to_df(
|
732
|
-
project=_PROJECT,
|
733
|
-
subproject=_SUBPROJECT,
|
734
|
-
custom_tags=dict([("autogen", True)]),
|
735
|
-
)
|
736
712
|
def predict_log_proba(
|
737
713
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
738
714
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -769,16 +745,6 @@ class Isomap(BaseTransformer):
|
|
769
745
|
return output_df
|
770
746
|
|
771
747
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
772
|
-
@telemetry.send_api_usage_telemetry(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
|
-
@telemetry.add_stmt_params_to_df(
|
778
|
-
project=_PROJECT,
|
779
|
-
subproject=_SUBPROJECT,
|
780
|
-
custom_tags=dict([("autogen", True)]),
|
781
|
-
)
|
782
748
|
def decision_function(
|
783
749
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
784
750
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -877,11 +843,6 @@ class Isomap(BaseTransformer):
|
|
877
843
|
subproject=_SUBPROJECT,
|
878
844
|
custom_tags=dict([("autogen", True)]),
|
879
845
|
)
|
880
|
-
@telemetry.add_stmt_params_to_df(
|
881
|
-
project=_PROJECT,
|
882
|
-
subproject=_SUBPROJECT,
|
883
|
-
custom_tags=dict([("autogen", True)]),
|
884
|
-
)
|
885
846
|
def kneighbors(
|
886
847
|
self,
|
887
848
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -941,18 +902,28 @@ class Isomap(BaseTransformer):
|
|
941
902
|
# For classifier, the type of predict is the same as the type of label
|
942
903
|
if self._sklearn_object._estimator_type == 'classifier':
|
943
904
|
# label columns is the desired type for output
|
944
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
905
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
945
906
|
# rename the output columns
|
946
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
907
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
908
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
909
|
+
([] if self._drop_input_cols else inputs)
|
910
|
+
+ outputs)
|
911
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
912
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
913
|
+
# Clusterer returns int64 cluster labels.
|
914
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
915
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
947
916
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
948
917
|
([] if self._drop_input_cols else inputs)
|
949
918
|
+ outputs)
|
919
|
+
|
950
920
|
# For regressor, the type of predict is float64
|
951
921
|
elif self._sklearn_object._estimator_type == 'regressor':
|
952
922
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
953
923
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
954
924
|
([] if self._drop_input_cols else inputs)
|
955
925
|
+ outputs)
|
926
|
+
|
956
927
|
for prob_func in PROB_FUNCTIONS:
|
957
928
|
if hasattr(self, prob_func):
|
958
929
|
output_cols_prefix: str = f"{prob_func}_"
|