snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Isomap(BaseTransformer):
57
58
  r"""Isomap Embedding
58
59
  For more details on this class, see [sklearn.manifold.Isomap]
@@ -60,6 +61,49 @@ class Isomap(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_neighbors: int or None, default=5
64
108
  Number of neighbors to consider for each point. If `n_neighbors` is an int,
65
109
  then `radius` must be `None`.
@@ -124,35 +168,6 @@ class Isomap(BaseTransformer):
124
168
 
125
169
  metric_params: dict, default=None
126
170
  Additional keyword arguments for the metric function.
127
-
128
- input_cols: Optional[Union[str, List[str]]]
129
- A string or list of strings representing column names that contain features.
130
- If this parameter is not specified, all columns in the input DataFrame except
131
- the columns specified by label_cols and sample_weight_col parameters are
132
- considered input columns.
133
-
134
- label_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain labels.
136
- This is a required param for estimators, as there is no way to infer these
137
- columns. If this parameter is not specified, then object is fitted without
138
- labels (like a transformer).
139
-
140
- output_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that will store the
142
- output of predict and transform operations. The length of output_cols must
143
- match the expected number of output columns from the specific estimator or
144
- transformer class used.
145
- If this parameter is not specified, output column names are derived by
146
- adding an OUTPUT_ prefix to the label column names. These inferred output
147
- column names work for estimator's predict() method, but output_cols must
148
- be set explicitly for transformers.
149
-
150
- sample_weight_col: Optional[str]
151
- A string representing the column name containing the sample weights.
152
- This argument is only required when working with weighted datasets.
153
-
154
- drop_input_cols: Optional[bool], default=False
155
- If set, the response of predict(), transform() methods will not contain input columns.
156
171
  """
157
172
 
158
173
  def __init__( # type: ignore[no-untyped-def]
@@ -173,6 +188,7 @@ class Isomap(BaseTransformer):
173
188
  input_cols: Optional[Union[str, Iterable[str]]] = None,
174
189
  output_cols: Optional[Union[str, Iterable[str]]] = None,
175
190
  label_cols: Optional[Union[str, Iterable[str]]] = None,
191
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
176
192
  drop_input_cols: Optional[bool] = False,
177
193
  sample_weight_col: Optional[str] = None,
178
194
  ) -> None:
@@ -181,9 +197,10 @@ class Isomap(BaseTransformer):
181
197
  self.set_input_cols(input_cols)
182
198
  self.set_output_cols(output_cols)
183
199
  self.set_label_cols(label_cols)
200
+ self.set_passthrough_cols(passthrough_cols)
184
201
  self.set_drop_input_cols(drop_input_cols)
185
202
  self.set_sample_weight_col(sample_weight_col)
186
- deps = set(SklearnWrapperProvider().dependencies)
203
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
187
204
 
188
205
  self._deps = list(deps)
189
206
 
@@ -203,13 +220,14 @@ class Isomap(BaseTransformer):
203
220
  args=init_args,
204
221
  klass=sklearn.manifold.Isomap
205
222
  )
206
- self._sklearn_object = sklearn.manifold.Isomap(
223
+ self._sklearn_object: Any = sklearn.manifold.Isomap(
207
224
  **cleaned_up_init_args,
208
225
  )
209
226
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
210
227
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
211
228
  self._snowpark_cols: Optional[List[str]] = self.input_cols
212
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
229
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
230
+ self._autogenerated = True
213
231
 
214
232
  def _get_rand_id(self) -> str:
215
233
  """
@@ -220,24 +238,6 @@ class Isomap(BaseTransformer):
220
238
  """
221
239
  return str(uuid4()).replace("-", "_").upper()
222
240
 
223
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
224
- """
225
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
226
-
227
- Args:
228
- dataset: Input dataset.
229
- """
230
- if not self.input_cols:
231
- cols = [
232
- c for c in dataset.columns
233
- if c not in self.get_label_cols() and c != self.sample_weight_col
234
- ]
235
- self.set_input_cols(input_cols=cols)
236
-
237
- if not self.output_cols:
238
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
239
- self.set_output_cols(output_cols=cols)
240
-
241
241
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Isomap":
242
242
  """
243
243
  Input columns setter.
@@ -283,54 +283,48 @@ class Isomap(BaseTransformer):
283
283
  self
284
284
  """
285
285
  self._infer_input_output_cols(dataset)
286
- if isinstance(dataset, pd.DataFrame):
287
- assert self._sklearn_object is not None # keep mypy happy
288
- self._sklearn_object = self._handlers.fit_pandas(
289
- dataset,
290
- self._sklearn_object,
291
- self.input_cols,
292
- self.label_cols,
293
- self.sample_weight_col
294
- )
295
- elif isinstance(dataset, DataFrame):
296
- self._fit_snowpark(dataset)
297
- else:
298
- raise TypeError(
299
- f"Unexpected dataset type: {type(dataset)}."
300
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
301
- )
286
+ if isinstance(dataset, DataFrame):
287
+ session = dataset._session
288
+ assert session is not None # keep mypy happy
289
+ # Validate that key package version in user workspace are supported in snowflake conda channel
290
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
291
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
292
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
293
+
294
+ # Specify input columns so column pruning will be enforced
295
+ selected_cols = self._get_active_columns()
296
+ if len(selected_cols) > 0:
297
+ dataset = dataset.select(selected_cols)
298
+
299
+ self._snowpark_cols = dataset.select(self.input_cols).columns
300
+
301
+ # If we are already in a stored procedure, no need to kick off another one.
302
+ if SNOWML_SPROC_ENV in os.environ:
303
+ statement_params = telemetry.get_function_usage_statement_params(
304
+ project=_PROJECT,
305
+ subproject=_SUBPROJECT,
306
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Isomap.__class__.__name__),
307
+ api_calls=[Session.call],
308
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
309
+ )
310
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
311
+ pd_df.columns = dataset.columns
312
+ dataset = pd_df
313
+
314
+ model_trainer = ModelTrainerBuilder.build(
315
+ estimator=self._sklearn_object,
316
+ dataset=dataset,
317
+ input_cols=self.input_cols,
318
+ label_cols=self.label_cols,
319
+ sample_weight_col=self.sample_weight_col,
320
+ autogenerated=self._autogenerated,
321
+ subproject=_SUBPROJECT
322
+ )
323
+ self._sklearn_object = model_trainer.train()
302
324
  self._is_fitted = True
303
325
  self._get_model_signatures(dataset)
304
326
  return self
305
327
 
306
- def _fit_snowpark(self, dataset: DataFrame) -> None:
307
- session = dataset._session
308
- assert session is not None # keep mypy happy
309
- # Validate that key package version in user workspace are supported in snowflake conda channel
310
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
311
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
312
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
313
-
314
- # Specify input columns so column pruning will be enforced
315
- selected_cols = self._get_active_columns()
316
- if len(selected_cols) > 0:
317
- dataset = dataset.select(selected_cols)
318
-
319
- estimator = self._sklearn_object
320
- assert estimator is not None # Keep mypy happy
321
-
322
- self._snowpark_cols = dataset.select(self.input_cols).columns
323
-
324
- self._sklearn_object = self._handlers.fit_snowpark(
325
- dataset,
326
- session,
327
- estimator,
328
- ["snowflake-snowpark-python"] + self._get_dependencies(),
329
- self.input_cols,
330
- self.label_cols,
331
- self.sample_weight_col,
332
- )
333
-
334
328
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
335
329
  if self._drop_input_cols:
336
330
  return []
@@ -518,11 +512,6 @@ class Isomap(BaseTransformer):
518
512
  subproject=_SUBPROJECT,
519
513
  custom_tags=dict([("autogen", True)]),
520
514
  )
521
- @telemetry.add_stmt_params_to_df(
522
- project=_PROJECT,
523
- subproject=_SUBPROJECT,
524
- custom_tags=dict([("autogen", True)]),
525
- )
526
515
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
527
516
  """Method not supported for this class.
528
517
 
@@ -574,11 +563,6 @@ class Isomap(BaseTransformer):
574
563
  subproject=_SUBPROJECT,
575
564
  custom_tags=dict([("autogen", True)]),
576
565
  )
577
- @telemetry.add_stmt_params_to_df(
578
- project=_PROJECT,
579
- subproject=_SUBPROJECT,
580
- custom_tags=dict([("autogen", True)]),
581
- )
582
566
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
583
567
  """Transform X
584
568
  For more details on this function, see [sklearn.manifold.Isomap.transform]
@@ -637,7 +621,8 @@ class Isomap(BaseTransformer):
637
621
  if False:
638
622
  self.fit(dataset)
639
623
  assert self._sklearn_object is not None
640
- return self._sklearn_object.labels_
624
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
625
+ return labels
641
626
  else:
642
627
  raise NotImplementedError
643
628
 
@@ -673,6 +658,7 @@ class Isomap(BaseTransformer):
673
658
  output_cols = []
674
659
 
675
660
  # Make sure column names are valid snowflake identifiers.
661
+ assert output_cols is not None # Make MyPy happy
676
662
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
677
663
 
678
664
  return rv
@@ -683,11 +669,6 @@ class Isomap(BaseTransformer):
683
669
  subproject=_SUBPROJECT,
684
670
  custom_tags=dict([("autogen", True)]),
685
671
  )
686
- @telemetry.add_stmt_params_to_df(
687
- project=_PROJECT,
688
- subproject=_SUBPROJECT,
689
- custom_tags=dict([("autogen", True)]),
690
- )
691
672
  def predict_proba(
692
673
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
693
674
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -728,11 +709,6 @@ class Isomap(BaseTransformer):
728
709
  subproject=_SUBPROJECT,
729
710
  custom_tags=dict([("autogen", True)]),
730
711
  )
731
- @telemetry.add_stmt_params_to_df(
732
- project=_PROJECT,
733
- subproject=_SUBPROJECT,
734
- custom_tags=dict([("autogen", True)]),
735
- )
736
712
  def predict_log_proba(
737
713
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
738
714
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -769,16 +745,6 @@ class Isomap(BaseTransformer):
769
745
  return output_df
770
746
 
771
747
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
772
- @telemetry.send_api_usage_telemetry(
773
- project=_PROJECT,
774
- subproject=_SUBPROJECT,
775
- custom_tags=dict([("autogen", True)]),
776
- )
777
- @telemetry.add_stmt_params_to_df(
778
- project=_PROJECT,
779
- subproject=_SUBPROJECT,
780
- custom_tags=dict([("autogen", True)]),
781
- )
782
748
  def decision_function(
783
749
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
784
750
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -877,11 +843,6 @@ class Isomap(BaseTransformer):
877
843
  subproject=_SUBPROJECT,
878
844
  custom_tags=dict([("autogen", True)]),
879
845
  )
880
- @telemetry.add_stmt_params_to_df(
881
- project=_PROJECT,
882
- subproject=_SUBPROJECT,
883
- custom_tags=dict([("autogen", True)]),
884
- )
885
846
  def kneighbors(
886
847
  self,
887
848
  dataset: Union[DataFrame, pd.DataFrame],
@@ -941,18 +902,28 @@ class Isomap(BaseTransformer):
941
902
  # For classifier, the type of predict is the same as the type of label
942
903
  if self._sklearn_object._estimator_type == 'classifier':
943
904
  # label columns is the desired type for output
944
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
905
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
945
906
  # rename the output columns
946
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
907
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
908
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
909
+ ([] if self._drop_input_cols else inputs)
910
+ + outputs)
911
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
912
+ # For outlier models, returns -1 for outliers and 1 for inliers.
913
+ # Clusterer returns int64 cluster labels.
914
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
915
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
947
916
  self._model_signature_dict["predict"] = ModelSignature(inputs,
948
917
  ([] if self._drop_input_cols else inputs)
949
918
  + outputs)
919
+
950
920
  # For regressor, the type of predict is float64
951
921
  elif self._sklearn_object._estimator_type == 'regressor':
952
922
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
953
923
  self._model_signature_dict["predict"] = ModelSignature(inputs,
954
924
  ([] if self._drop_input_cols else inputs)
955
925
  + outputs)
926
+
956
927
  for prob_func in PROB_FUNCTIONS:
957
928
  if hasattr(self, prob_func):
958
929
  output_cols_prefix: str = f"{prob_func}_"