snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GradientBoostingRegressor(BaseTransformer):
|
57
58
|
r"""Gradient Boosting for regression
|
58
59
|
For more details on this class, see [sklearn.ensemble.GradientBoostingRegressor]
|
@@ -60,6 +61,51 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'squared_error', 'absolute_error', 'huber', 'quantile'}, default='squared_error'
|
64
110
|
Loss function to be optimized. 'squared_error' refers to the squared
|
65
111
|
error for regression. 'absolute_error' refers to the absolute error of
|
@@ -226,35 +272,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
226
272
|
``ccp_alpha`` will be chosen. By default, no pruning is performed.
|
227
273
|
Values must be in the range `[0.0, inf)`.
|
228
274
|
See :ref:`minimal_cost_complexity_pruning` for details.
|
229
|
-
|
230
|
-
input_cols: Optional[Union[str, List[str]]]
|
231
|
-
A string or list of strings representing column names that contain features.
|
232
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
233
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
234
|
-
considered input columns.
|
235
|
-
|
236
|
-
label_cols: Optional[Union[str, List[str]]]
|
237
|
-
A string or list of strings representing column names that contain labels.
|
238
|
-
This is a required param for estimators, as there is no way to infer these
|
239
|
-
columns. If this parameter is not specified, then object is fitted without
|
240
|
-
labels (like a transformer).
|
241
|
-
|
242
|
-
output_cols: Optional[Union[str, List[str]]]
|
243
|
-
A string or list of strings representing column names that will store the
|
244
|
-
output of predict and transform operations. The length of output_cols must
|
245
|
-
match the expected number of output columns from the specific estimator or
|
246
|
-
transformer class used.
|
247
|
-
If this parameter is not specified, output column names are derived by
|
248
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
249
|
-
column names work for estimator's predict() method, but output_cols must
|
250
|
-
be set explicitly for transformers.
|
251
|
-
|
252
|
-
sample_weight_col: Optional[str]
|
253
|
-
A string representing the column name containing the sample weights.
|
254
|
-
This argument is only required when working with weighted datasets.
|
255
|
-
|
256
|
-
drop_input_cols: Optional[bool], default=False
|
257
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
258
275
|
"""
|
259
276
|
|
260
277
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -284,6 +301,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
284
301
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
285
302
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
286
303
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
304
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
287
305
|
drop_input_cols: Optional[bool] = False,
|
288
306
|
sample_weight_col: Optional[str] = None,
|
289
307
|
) -> None:
|
@@ -292,9 +310,10 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
292
310
|
self.set_input_cols(input_cols)
|
293
311
|
self.set_output_cols(output_cols)
|
294
312
|
self.set_label_cols(label_cols)
|
313
|
+
self.set_passthrough_cols(passthrough_cols)
|
295
314
|
self.set_drop_input_cols(drop_input_cols)
|
296
315
|
self.set_sample_weight_col(sample_weight_col)
|
297
|
-
deps = set(
|
316
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
298
317
|
|
299
318
|
self._deps = list(deps)
|
300
319
|
|
@@ -323,13 +342,14 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
323
342
|
args=init_args,
|
324
343
|
klass=sklearn.ensemble.GradientBoostingRegressor
|
325
344
|
)
|
326
|
-
self._sklearn_object = sklearn.ensemble.GradientBoostingRegressor(
|
345
|
+
self._sklearn_object: Any = sklearn.ensemble.GradientBoostingRegressor(
|
327
346
|
**cleaned_up_init_args,
|
328
347
|
)
|
329
348
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
330
349
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
331
350
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
332
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
351
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
352
|
+
self._autogenerated = True
|
333
353
|
|
334
354
|
def _get_rand_id(self) -> str:
|
335
355
|
"""
|
@@ -340,24 +360,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
340
360
|
"""
|
341
361
|
return str(uuid4()).replace("-", "_").upper()
|
342
362
|
|
343
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
344
|
-
"""
|
345
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
346
|
-
|
347
|
-
Args:
|
348
|
-
dataset: Input dataset.
|
349
|
-
"""
|
350
|
-
if not self.input_cols:
|
351
|
-
cols = [
|
352
|
-
c for c in dataset.columns
|
353
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
354
|
-
]
|
355
|
-
self.set_input_cols(input_cols=cols)
|
356
|
-
|
357
|
-
if not self.output_cols:
|
358
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
359
|
-
self.set_output_cols(output_cols=cols)
|
360
|
-
|
361
363
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GradientBoostingRegressor":
|
362
364
|
"""
|
363
365
|
Input columns setter.
|
@@ -403,54 +405,48 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
403
405
|
self
|
404
406
|
"""
|
405
407
|
self._infer_input_output_cols(dataset)
|
406
|
-
if isinstance(dataset,
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
self.
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
408
|
+
if isinstance(dataset, DataFrame):
|
409
|
+
session = dataset._session
|
410
|
+
assert session is not None # keep mypy happy
|
411
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
412
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
413
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
414
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
415
|
+
|
416
|
+
# Specify input columns so column pruning will be enforced
|
417
|
+
selected_cols = self._get_active_columns()
|
418
|
+
if len(selected_cols) > 0:
|
419
|
+
dataset = dataset.select(selected_cols)
|
420
|
+
|
421
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
422
|
+
|
423
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
424
|
+
if SNOWML_SPROC_ENV in os.environ:
|
425
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
426
|
+
project=_PROJECT,
|
427
|
+
subproject=_SUBPROJECT,
|
428
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingRegressor.__class__.__name__),
|
429
|
+
api_calls=[Session.call],
|
430
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
431
|
+
)
|
432
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
433
|
+
pd_df.columns = dataset.columns
|
434
|
+
dataset = pd_df
|
435
|
+
|
436
|
+
model_trainer = ModelTrainerBuilder.build(
|
437
|
+
estimator=self._sklearn_object,
|
438
|
+
dataset=dataset,
|
439
|
+
input_cols=self.input_cols,
|
440
|
+
label_cols=self.label_cols,
|
441
|
+
sample_weight_col=self.sample_weight_col,
|
442
|
+
autogenerated=self._autogenerated,
|
443
|
+
subproject=_SUBPROJECT
|
444
|
+
)
|
445
|
+
self._sklearn_object = model_trainer.train()
|
422
446
|
self._is_fitted = True
|
423
447
|
self._get_model_signatures(dataset)
|
424
448
|
return self
|
425
449
|
|
426
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
427
|
-
session = dataset._session
|
428
|
-
assert session is not None # keep mypy happy
|
429
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
430
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
431
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
432
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
433
|
-
|
434
|
-
# Specify input columns so column pruning will be enforced
|
435
|
-
selected_cols = self._get_active_columns()
|
436
|
-
if len(selected_cols) > 0:
|
437
|
-
dataset = dataset.select(selected_cols)
|
438
|
-
|
439
|
-
estimator = self._sklearn_object
|
440
|
-
assert estimator is not None # Keep mypy happy
|
441
|
-
|
442
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
443
|
-
|
444
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
445
|
-
dataset,
|
446
|
-
session,
|
447
|
-
estimator,
|
448
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
449
|
-
self.input_cols,
|
450
|
-
self.label_cols,
|
451
|
-
self.sample_weight_col,
|
452
|
-
)
|
453
|
-
|
454
450
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
455
451
|
if self._drop_input_cols:
|
456
452
|
return []
|
@@ -638,11 +634,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
638
634
|
subproject=_SUBPROJECT,
|
639
635
|
custom_tags=dict([("autogen", True)]),
|
640
636
|
)
|
641
|
-
@telemetry.add_stmt_params_to_df(
|
642
|
-
project=_PROJECT,
|
643
|
-
subproject=_SUBPROJECT,
|
644
|
-
custom_tags=dict([("autogen", True)]),
|
645
|
-
)
|
646
637
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
647
638
|
"""Predict regression target for X
|
648
639
|
For more details on this function, see [sklearn.ensemble.GradientBoostingRegressor.predict]
|
@@ -696,11 +687,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
696
687
|
subproject=_SUBPROJECT,
|
697
688
|
custom_tags=dict([("autogen", True)]),
|
698
689
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
690
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
705
691
|
"""Method not supported for this class.
|
706
692
|
|
@@ -757,7 +743,8 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
757
743
|
if False:
|
758
744
|
self.fit(dataset)
|
759
745
|
assert self._sklearn_object is not None
|
760
|
-
|
746
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
747
|
+
return labels
|
761
748
|
else:
|
762
749
|
raise NotImplementedError
|
763
750
|
|
@@ -793,6 +780,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
793
780
|
output_cols = []
|
794
781
|
|
795
782
|
# Make sure column names are valid snowflake identifiers.
|
783
|
+
assert output_cols is not None # Make MyPy happy
|
796
784
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
797
785
|
|
798
786
|
return rv
|
@@ -803,11 +791,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
803
791
|
subproject=_SUBPROJECT,
|
804
792
|
custom_tags=dict([("autogen", True)]),
|
805
793
|
)
|
806
|
-
@telemetry.add_stmt_params_to_df(
|
807
|
-
project=_PROJECT,
|
808
|
-
subproject=_SUBPROJECT,
|
809
|
-
custom_tags=dict([("autogen", True)]),
|
810
|
-
)
|
811
794
|
def predict_proba(
|
812
795
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
813
796
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -848,11 +831,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
848
831
|
subproject=_SUBPROJECT,
|
849
832
|
custom_tags=dict([("autogen", True)]),
|
850
833
|
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
834
|
def predict_log_proba(
|
857
835
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
858
836
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,16 +867,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
889
867
|
return output_df
|
890
868
|
|
891
869
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
892
|
-
@telemetry.send_api_usage_telemetry(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
|
-
@telemetry.add_stmt_params_to_df(
|
898
|
-
project=_PROJECT,
|
899
|
-
subproject=_SUBPROJECT,
|
900
|
-
custom_tags=dict([("autogen", True)]),
|
901
|
-
)
|
902
870
|
def decision_function(
|
903
871
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
904
872
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -999,11 +967,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
999
967
|
subproject=_SUBPROJECT,
|
1000
968
|
custom_tags=dict([("autogen", True)]),
|
1001
969
|
)
|
1002
|
-
@telemetry.add_stmt_params_to_df(
|
1003
|
-
project=_PROJECT,
|
1004
|
-
subproject=_SUBPROJECT,
|
1005
|
-
custom_tags=dict([("autogen", True)]),
|
1006
|
-
)
|
1007
970
|
def kneighbors(
|
1008
971
|
self,
|
1009
972
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1063,18 +1026,28 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
1063
1026
|
# For classifier, the type of predict is the same as the type of label
|
1064
1027
|
if self._sklearn_object._estimator_type == 'classifier':
|
1065
1028
|
# label columns is the desired type for output
|
1066
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1029
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1067
1030
|
# rename the output columns
|
1068
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1031
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1069
1032
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1070
1033
|
([] if self._drop_input_cols else inputs)
|
1071
1034
|
+ outputs)
|
1035
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1036
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1037
|
+
# Clusterer returns int64 cluster labels.
|
1038
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1039
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1040
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1041
|
+
([] if self._drop_input_cols else inputs)
|
1042
|
+
+ outputs)
|
1043
|
+
|
1072
1044
|
# For regressor, the type of predict is float64
|
1073
1045
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1074
1046
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1075
1047
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1076
1048
|
([] if self._drop_input_cols else inputs)
|
1077
1049
|
+ outputs)
|
1050
|
+
|
1078
1051
|
for prob_func in PROB_FUNCTIONS:
|
1079
1052
|
if hasattr(self, prob_func):
|
1080
1053
|
output_cols_prefix: str = f"{prob_func}_"
|