snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GradientBoostingRegressor(BaseTransformer):
57
58
  r"""Gradient Boosting for regression
58
59
  For more details on this class, see [sklearn.ensemble.GradientBoostingRegressor]
@@ -60,6 +61,51 @@ class GradientBoostingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'squared_error', 'absolute_error', 'huber', 'quantile'}, default='squared_error'
64
110
  Loss function to be optimized. 'squared_error' refers to the squared
65
111
  error for regression. 'absolute_error' refers to the absolute error of
@@ -226,35 +272,6 @@ class GradientBoostingRegressor(BaseTransformer):
226
272
  ``ccp_alpha`` will be chosen. By default, no pruning is performed.
227
273
  Values must be in the range `[0.0, inf)`.
228
274
  See :ref:`minimal_cost_complexity_pruning` for details.
229
-
230
- input_cols: Optional[Union[str, List[str]]]
231
- A string or list of strings representing column names that contain features.
232
- If this parameter is not specified, all columns in the input DataFrame except
233
- the columns specified by label_cols and sample_weight_col parameters are
234
- considered input columns.
235
-
236
- label_cols: Optional[Union[str, List[str]]]
237
- A string or list of strings representing column names that contain labels.
238
- This is a required param for estimators, as there is no way to infer these
239
- columns. If this parameter is not specified, then object is fitted without
240
- labels (like a transformer).
241
-
242
- output_cols: Optional[Union[str, List[str]]]
243
- A string or list of strings representing column names that will store the
244
- output of predict and transform operations. The length of output_cols must
245
- match the expected number of output columns from the specific estimator or
246
- transformer class used.
247
- If this parameter is not specified, output column names are derived by
248
- adding an OUTPUT_ prefix to the label column names. These inferred output
249
- column names work for estimator's predict() method, but output_cols must
250
- be set explicitly for transformers.
251
-
252
- sample_weight_col: Optional[str]
253
- A string representing the column name containing the sample weights.
254
- This argument is only required when working with weighted datasets.
255
-
256
- drop_input_cols: Optional[bool], default=False
257
- If set, the response of predict(), transform() methods will not contain input columns.
258
275
  """
259
276
 
260
277
  def __init__( # type: ignore[no-untyped-def]
@@ -284,6 +301,7 @@ class GradientBoostingRegressor(BaseTransformer):
284
301
  input_cols: Optional[Union[str, Iterable[str]]] = None,
285
302
  output_cols: Optional[Union[str, Iterable[str]]] = None,
286
303
  label_cols: Optional[Union[str, Iterable[str]]] = None,
304
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
287
305
  drop_input_cols: Optional[bool] = False,
288
306
  sample_weight_col: Optional[str] = None,
289
307
  ) -> None:
@@ -292,9 +310,10 @@ class GradientBoostingRegressor(BaseTransformer):
292
310
  self.set_input_cols(input_cols)
293
311
  self.set_output_cols(output_cols)
294
312
  self.set_label_cols(label_cols)
313
+ self.set_passthrough_cols(passthrough_cols)
295
314
  self.set_drop_input_cols(drop_input_cols)
296
315
  self.set_sample_weight_col(sample_weight_col)
297
- deps = set(SklearnWrapperProvider().dependencies)
316
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
298
317
 
299
318
  self._deps = list(deps)
300
319
 
@@ -323,13 +342,14 @@ class GradientBoostingRegressor(BaseTransformer):
323
342
  args=init_args,
324
343
  klass=sklearn.ensemble.GradientBoostingRegressor
325
344
  )
326
- self._sklearn_object = sklearn.ensemble.GradientBoostingRegressor(
345
+ self._sklearn_object: Any = sklearn.ensemble.GradientBoostingRegressor(
327
346
  **cleaned_up_init_args,
328
347
  )
329
348
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
330
349
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
331
350
  self._snowpark_cols: Optional[List[str]] = self.input_cols
332
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
351
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
352
+ self._autogenerated = True
333
353
 
334
354
  def _get_rand_id(self) -> str:
335
355
  """
@@ -340,24 +360,6 @@ class GradientBoostingRegressor(BaseTransformer):
340
360
  """
341
361
  return str(uuid4()).replace("-", "_").upper()
342
362
 
343
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
344
- """
345
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
346
-
347
- Args:
348
- dataset: Input dataset.
349
- """
350
- if not self.input_cols:
351
- cols = [
352
- c for c in dataset.columns
353
- if c not in self.get_label_cols() and c != self.sample_weight_col
354
- ]
355
- self.set_input_cols(input_cols=cols)
356
-
357
- if not self.output_cols:
358
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
359
- self.set_output_cols(output_cols=cols)
360
-
361
363
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GradientBoostingRegressor":
362
364
  """
363
365
  Input columns setter.
@@ -403,54 +405,48 @@ class GradientBoostingRegressor(BaseTransformer):
403
405
  self
404
406
  """
405
407
  self._infer_input_output_cols(dataset)
406
- if isinstance(dataset, pd.DataFrame):
407
- assert self._sklearn_object is not None # keep mypy happy
408
- self._sklearn_object = self._handlers.fit_pandas(
409
- dataset,
410
- self._sklearn_object,
411
- self.input_cols,
412
- self.label_cols,
413
- self.sample_weight_col
414
- )
415
- elif isinstance(dataset, DataFrame):
416
- self._fit_snowpark(dataset)
417
- else:
418
- raise TypeError(
419
- f"Unexpected dataset type: {type(dataset)}."
420
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
421
- )
408
+ if isinstance(dataset, DataFrame):
409
+ session = dataset._session
410
+ assert session is not None # keep mypy happy
411
+ # Validate that key package version in user workspace are supported in snowflake conda channel
412
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
413
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
414
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
415
+
416
+ # Specify input columns so column pruning will be enforced
417
+ selected_cols = self._get_active_columns()
418
+ if len(selected_cols) > 0:
419
+ dataset = dataset.select(selected_cols)
420
+
421
+ self._snowpark_cols = dataset.select(self.input_cols).columns
422
+
423
+ # If we are already in a stored procedure, no need to kick off another one.
424
+ if SNOWML_SPROC_ENV in os.environ:
425
+ statement_params = telemetry.get_function_usage_statement_params(
426
+ project=_PROJECT,
427
+ subproject=_SUBPROJECT,
428
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingRegressor.__class__.__name__),
429
+ api_calls=[Session.call],
430
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
431
+ )
432
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
433
+ pd_df.columns = dataset.columns
434
+ dataset = pd_df
435
+
436
+ model_trainer = ModelTrainerBuilder.build(
437
+ estimator=self._sklearn_object,
438
+ dataset=dataset,
439
+ input_cols=self.input_cols,
440
+ label_cols=self.label_cols,
441
+ sample_weight_col=self.sample_weight_col,
442
+ autogenerated=self._autogenerated,
443
+ subproject=_SUBPROJECT
444
+ )
445
+ self._sklearn_object = model_trainer.train()
422
446
  self._is_fitted = True
423
447
  self._get_model_signatures(dataset)
424
448
  return self
425
449
 
426
- def _fit_snowpark(self, dataset: DataFrame) -> None:
427
- session = dataset._session
428
- assert session is not None # keep mypy happy
429
- # Validate that key package version in user workspace are supported in snowflake conda channel
430
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
431
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
432
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
433
-
434
- # Specify input columns so column pruning will be enforced
435
- selected_cols = self._get_active_columns()
436
- if len(selected_cols) > 0:
437
- dataset = dataset.select(selected_cols)
438
-
439
- estimator = self._sklearn_object
440
- assert estimator is not None # Keep mypy happy
441
-
442
- self._snowpark_cols = dataset.select(self.input_cols).columns
443
-
444
- self._sklearn_object = self._handlers.fit_snowpark(
445
- dataset,
446
- session,
447
- estimator,
448
- ["snowflake-snowpark-python"] + self._get_dependencies(),
449
- self.input_cols,
450
- self.label_cols,
451
- self.sample_weight_col,
452
- )
453
-
454
450
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
455
451
  if self._drop_input_cols:
456
452
  return []
@@ -638,11 +634,6 @@ class GradientBoostingRegressor(BaseTransformer):
638
634
  subproject=_SUBPROJECT,
639
635
  custom_tags=dict([("autogen", True)]),
640
636
  )
641
- @telemetry.add_stmt_params_to_df(
642
- project=_PROJECT,
643
- subproject=_SUBPROJECT,
644
- custom_tags=dict([("autogen", True)]),
645
- )
646
637
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
647
638
  """Predict regression target for X
648
639
  For more details on this function, see [sklearn.ensemble.GradientBoostingRegressor.predict]
@@ -696,11 +687,6 @@ class GradientBoostingRegressor(BaseTransformer):
696
687
  subproject=_SUBPROJECT,
697
688
  custom_tags=dict([("autogen", True)]),
698
689
  )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
690
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
705
691
  """Method not supported for this class.
706
692
 
@@ -757,7 +743,8 @@ class GradientBoostingRegressor(BaseTransformer):
757
743
  if False:
758
744
  self.fit(dataset)
759
745
  assert self._sklearn_object is not None
760
- return self._sklearn_object.labels_
746
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
747
+ return labels
761
748
  else:
762
749
  raise NotImplementedError
763
750
 
@@ -793,6 +780,7 @@ class GradientBoostingRegressor(BaseTransformer):
793
780
  output_cols = []
794
781
 
795
782
  # Make sure column names are valid snowflake identifiers.
783
+ assert output_cols is not None # Make MyPy happy
796
784
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
797
785
 
798
786
  return rv
@@ -803,11 +791,6 @@ class GradientBoostingRegressor(BaseTransformer):
803
791
  subproject=_SUBPROJECT,
804
792
  custom_tags=dict([("autogen", True)]),
805
793
  )
806
- @telemetry.add_stmt_params_to_df(
807
- project=_PROJECT,
808
- subproject=_SUBPROJECT,
809
- custom_tags=dict([("autogen", True)]),
810
- )
811
794
  def predict_proba(
812
795
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
813
796
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -848,11 +831,6 @@ class GradientBoostingRegressor(BaseTransformer):
848
831
  subproject=_SUBPROJECT,
849
832
  custom_tags=dict([("autogen", True)]),
850
833
  )
851
- @telemetry.add_stmt_params_to_df(
852
- project=_PROJECT,
853
- subproject=_SUBPROJECT,
854
- custom_tags=dict([("autogen", True)]),
855
- )
856
834
  def predict_log_proba(
857
835
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
858
836
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -889,16 +867,6 @@ class GradientBoostingRegressor(BaseTransformer):
889
867
  return output_df
890
868
 
891
869
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
892
- @telemetry.send_api_usage_telemetry(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
- @telemetry.add_stmt_params_to_df(
898
- project=_PROJECT,
899
- subproject=_SUBPROJECT,
900
- custom_tags=dict([("autogen", True)]),
901
- )
902
870
  def decision_function(
903
871
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
904
872
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -999,11 +967,6 @@ class GradientBoostingRegressor(BaseTransformer):
999
967
  subproject=_SUBPROJECT,
1000
968
  custom_tags=dict([("autogen", True)]),
1001
969
  )
1002
- @telemetry.add_stmt_params_to_df(
1003
- project=_PROJECT,
1004
- subproject=_SUBPROJECT,
1005
- custom_tags=dict([("autogen", True)]),
1006
- )
1007
970
  def kneighbors(
1008
971
  self,
1009
972
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1063,18 +1026,28 @@ class GradientBoostingRegressor(BaseTransformer):
1063
1026
  # For classifier, the type of predict is the same as the type of label
1064
1027
  if self._sklearn_object._estimator_type == 'classifier':
1065
1028
  # label columns is the desired type for output
1066
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1029
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1067
1030
  # rename the output columns
1068
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1031
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1069
1032
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1070
1033
  ([] if self._drop_input_cols else inputs)
1071
1034
  + outputs)
1035
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1036
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1037
+ # Clusterer returns int64 cluster labels.
1038
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1039
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1040
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
+ ([] if self._drop_input_cols else inputs)
1042
+ + outputs)
1043
+
1072
1044
  # For regressor, the type of predict is float64
1073
1045
  elif self._sklearn_object._estimator_type == 'regressor':
1074
1046
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1075
1047
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1076
1048
  ([] if self._drop_input_cols else inputs)
1077
1049
  + outputs)
1050
+
1078
1051
  for prob_func in PROB_FUNCTIONS:
1079
1052
  if hasattr(self, prob_func):
1080
1053
  output_cols_prefix: str = f"{prob_func}_"