snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NuSVC(BaseTransformer):
|
57
58
|
r"""Nu-Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.NuSVC]
|
@@ -60,6 +61,51 @@ class NuSVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
nu: float, default=0.5
|
64
110
|
An upper bound on the fraction of margin errors (see :ref:`User Guide
|
65
111
|
<nu_svc>`) and a lower bound of the fraction of support vectors.
|
@@ -137,35 +183,6 @@ class NuSVC(BaseTransformer):
|
|
137
183
|
probability estimates. Ignored when `probability` is False.
|
138
184
|
Pass an int for reproducible output across multiple function calls.
|
139
185
|
See :term:`Glossary <random_state>`.
|
140
|
-
|
141
|
-
input_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that contain features.
|
143
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
144
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
145
|
-
considered input columns.
|
146
|
-
|
147
|
-
label_cols: Optional[Union[str, List[str]]]
|
148
|
-
A string or list of strings representing column names that contain labels.
|
149
|
-
This is a required param for estimators, as there is no way to infer these
|
150
|
-
columns. If this parameter is not specified, then object is fitted without
|
151
|
-
labels (like a transformer).
|
152
|
-
|
153
|
-
output_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that will store the
|
155
|
-
output of predict and transform operations. The length of output_cols must
|
156
|
-
match the expected number of output columns from the specific estimator or
|
157
|
-
transformer class used.
|
158
|
-
If this parameter is not specified, output column names are derived by
|
159
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
160
|
-
column names work for estimator's predict() method, but output_cols must
|
161
|
-
be set explicitly for transformers.
|
162
|
-
|
163
|
-
sample_weight_col: Optional[str]
|
164
|
-
A string representing the column name containing the sample weights.
|
165
|
-
This argument is only required when working with weighted datasets.
|
166
|
-
|
167
|
-
drop_input_cols: Optional[bool], default=False
|
168
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
169
186
|
"""
|
170
187
|
|
171
188
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -189,6 +206,7 @@ class NuSVC(BaseTransformer):
|
|
189
206
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
190
207
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
191
208
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
209
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
192
210
|
drop_input_cols: Optional[bool] = False,
|
193
211
|
sample_weight_col: Optional[str] = None,
|
194
212
|
) -> None:
|
@@ -197,9 +215,10 @@ class NuSVC(BaseTransformer):
|
|
197
215
|
self.set_input_cols(input_cols)
|
198
216
|
self.set_output_cols(output_cols)
|
199
217
|
self.set_label_cols(label_cols)
|
218
|
+
self.set_passthrough_cols(passthrough_cols)
|
200
219
|
self.set_drop_input_cols(drop_input_cols)
|
201
220
|
self.set_sample_weight_col(sample_weight_col)
|
202
|
-
deps = set(
|
221
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
203
222
|
|
204
223
|
self._deps = list(deps)
|
205
224
|
|
@@ -222,13 +241,14 @@ class NuSVC(BaseTransformer):
|
|
222
241
|
args=init_args,
|
223
242
|
klass=sklearn.svm.NuSVC
|
224
243
|
)
|
225
|
-
self._sklearn_object = sklearn.svm.NuSVC(
|
244
|
+
self._sklearn_object: Any = sklearn.svm.NuSVC(
|
226
245
|
**cleaned_up_init_args,
|
227
246
|
)
|
228
247
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
229
248
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
230
249
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
231
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
250
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
251
|
+
self._autogenerated = True
|
232
252
|
|
233
253
|
def _get_rand_id(self) -> str:
|
234
254
|
"""
|
@@ -239,24 +259,6 @@ class NuSVC(BaseTransformer):
|
|
239
259
|
"""
|
240
260
|
return str(uuid4()).replace("-", "_").upper()
|
241
261
|
|
242
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
243
|
-
"""
|
244
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
245
|
-
|
246
|
-
Args:
|
247
|
-
dataset: Input dataset.
|
248
|
-
"""
|
249
|
-
if not self.input_cols:
|
250
|
-
cols = [
|
251
|
-
c for c in dataset.columns
|
252
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
253
|
-
]
|
254
|
-
self.set_input_cols(input_cols=cols)
|
255
|
-
|
256
|
-
if not self.output_cols:
|
257
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
258
|
-
self.set_output_cols(output_cols=cols)
|
259
|
-
|
260
262
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NuSVC":
|
261
263
|
"""
|
262
264
|
Input columns setter.
|
@@ -302,54 +304,48 @@ class NuSVC(BaseTransformer):
|
|
302
304
|
self
|
303
305
|
"""
|
304
306
|
self._infer_input_output_cols(dataset)
|
305
|
-
if isinstance(dataset,
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
self.
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
307
|
+
if isinstance(dataset, DataFrame):
|
308
|
+
session = dataset._session
|
309
|
+
assert session is not None # keep mypy happy
|
310
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
311
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
312
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
313
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
314
|
+
|
315
|
+
# Specify input columns so column pruning will be enforced
|
316
|
+
selected_cols = self._get_active_columns()
|
317
|
+
if len(selected_cols) > 0:
|
318
|
+
dataset = dataset.select(selected_cols)
|
319
|
+
|
320
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
321
|
+
|
322
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
323
|
+
if SNOWML_SPROC_ENV in os.environ:
|
324
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
325
|
+
project=_PROJECT,
|
326
|
+
subproject=_SUBPROJECT,
|
327
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
|
328
|
+
api_calls=[Session.call],
|
329
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
330
|
+
)
|
331
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
332
|
+
pd_df.columns = dataset.columns
|
333
|
+
dataset = pd_df
|
334
|
+
|
335
|
+
model_trainer = ModelTrainerBuilder.build(
|
336
|
+
estimator=self._sklearn_object,
|
337
|
+
dataset=dataset,
|
338
|
+
input_cols=self.input_cols,
|
339
|
+
label_cols=self.label_cols,
|
340
|
+
sample_weight_col=self.sample_weight_col,
|
341
|
+
autogenerated=self._autogenerated,
|
342
|
+
subproject=_SUBPROJECT
|
343
|
+
)
|
344
|
+
self._sklearn_object = model_trainer.train()
|
321
345
|
self._is_fitted = True
|
322
346
|
self._get_model_signatures(dataset)
|
323
347
|
return self
|
324
348
|
|
325
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
326
|
-
session = dataset._session
|
327
|
-
assert session is not None # keep mypy happy
|
328
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
329
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
330
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
331
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
332
|
-
|
333
|
-
# Specify input columns so column pruning will be enforced
|
334
|
-
selected_cols = self._get_active_columns()
|
335
|
-
if len(selected_cols) > 0:
|
336
|
-
dataset = dataset.select(selected_cols)
|
337
|
-
|
338
|
-
estimator = self._sklearn_object
|
339
|
-
assert estimator is not None # Keep mypy happy
|
340
|
-
|
341
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
342
|
-
|
343
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
344
|
-
dataset,
|
345
|
-
session,
|
346
|
-
estimator,
|
347
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
348
|
-
self.input_cols,
|
349
|
-
self.label_cols,
|
350
|
-
self.sample_weight_col,
|
351
|
-
)
|
352
|
-
|
353
349
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
354
350
|
if self._drop_input_cols:
|
355
351
|
return []
|
@@ -537,11 +533,6 @@ class NuSVC(BaseTransformer):
|
|
537
533
|
subproject=_SUBPROJECT,
|
538
534
|
custom_tags=dict([("autogen", True)]),
|
539
535
|
)
|
540
|
-
@telemetry.add_stmt_params_to_df(
|
541
|
-
project=_PROJECT,
|
542
|
-
subproject=_SUBPROJECT,
|
543
|
-
custom_tags=dict([("autogen", True)]),
|
544
|
-
)
|
545
536
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
546
537
|
"""Perform classification on samples in X
|
547
538
|
For more details on this function, see [sklearn.svm.NuSVC.predict]
|
@@ -595,11 +586,6 @@ class NuSVC(BaseTransformer):
|
|
595
586
|
subproject=_SUBPROJECT,
|
596
587
|
custom_tags=dict([("autogen", True)]),
|
597
588
|
)
|
598
|
-
@telemetry.add_stmt_params_to_df(
|
599
|
-
project=_PROJECT,
|
600
|
-
subproject=_SUBPROJECT,
|
601
|
-
custom_tags=dict([("autogen", True)]),
|
602
|
-
)
|
603
589
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
604
590
|
"""Method not supported for this class.
|
605
591
|
|
@@ -656,7 +642,8 @@ class NuSVC(BaseTransformer):
|
|
656
642
|
if False:
|
657
643
|
self.fit(dataset)
|
658
644
|
assert self._sklearn_object is not None
|
659
|
-
|
645
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
646
|
+
return labels
|
660
647
|
else:
|
661
648
|
raise NotImplementedError
|
662
649
|
|
@@ -692,6 +679,7 @@ class NuSVC(BaseTransformer):
|
|
692
679
|
output_cols = []
|
693
680
|
|
694
681
|
# Make sure column names are valid snowflake identifiers.
|
682
|
+
assert output_cols is not None # Make MyPy happy
|
695
683
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
696
684
|
|
697
685
|
return rv
|
@@ -702,11 +690,6 @@ class NuSVC(BaseTransformer):
|
|
702
690
|
subproject=_SUBPROJECT,
|
703
691
|
custom_tags=dict([("autogen", True)]),
|
704
692
|
)
|
705
|
-
@telemetry.add_stmt_params_to_df(
|
706
|
-
project=_PROJECT,
|
707
|
-
subproject=_SUBPROJECT,
|
708
|
-
custom_tags=dict([("autogen", True)]),
|
709
|
-
)
|
710
693
|
def predict_proba(
|
711
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
712
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -749,11 +732,6 @@ class NuSVC(BaseTransformer):
|
|
749
732
|
subproject=_SUBPROJECT,
|
750
733
|
custom_tags=dict([("autogen", True)]),
|
751
734
|
)
|
752
|
-
@telemetry.add_stmt_params_to_df(
|
753
|
-
project=_PROJECT,
|
754
|
-
subproject=_SUBPROJECT,
|
755
|
-
custom_tags=dict([("autogen", True)]),
|
756
|
-
)
|
757
735
|
def predict_log_proba(
|
758
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
759
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -792,16 +770,6 @@ class NuSVC(BaseTransformer):
|
|
792
770
|
return output_df
|
793
771
|
|
794
772
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
795
|
-
@telemetry.send_api_usage_telemetry(
|
796
|
-
project=_PROJECT,
|
797
|
-
subproject=_SUBPROJECT,
|
798
|
-
custom_tags=dict([("autogen", True)]),
|
799
|
-
)
|
800
|
-
@telemetry.add_stmt_params_to_df(
|
801
|
-
project=_PROJECT,
|
802
|
-
subproject=_SUBPROJECT,
|
803
|
-
custom_tags=dict([("autogen", True)]),
|
804
|
-
)
|
805
773
|
def decision_function(
|
806
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
807
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -904,11 +872,6 @@ class NuSVC(BaseTransformer):
|
|
904
872
|
subproject=_SUBPROJECT,
|
905
873
|
custom_tags=dict([("autogen", True)]),
|
906
874
|
)
|
907
|
-
@telemetry.add_stmt_params_to_df(
|
908
|
-
project=_PROJECT,
|
909
|
-
subproject=_SUBPROJECT,
|
910
|
-
custom_tags=dict([("autogen", True)]),
|
911
|
-
)
|
912
875
|
def kneighbors(
|
913
876
|
self,
|
914
877
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -968,18 +931,28 @@ class NuSVC(BaseTransformer):
|
|
968
931
|
# For classifier, the type of predict is the same as the type of label
|
969
932
|
if self._sklearn_object._estimator_type == 'classifier':
|
970
933
|
# label columns is the desired type for output
|
971
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
934
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
935
|
# rename the output columns
|
973
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
936
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
937
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
975
938
|
([] if self._drop_input_cols else inputs)
|
976
939
|
+ outputs)
|
940
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
941
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
942
|
+
# Clusterer returns int64 cluster labels.
|
943
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
944
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
945
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
946
|
+
([] if self._drop_input_cols else inputs)
|
947
|
+
+ outputs)
|
948
|
+
|
977
949
|
# For regressor, the type of predict is float64
|
978
950
|
elif self._sklearn_object._estimator_type == 'regressor':
|
979
951
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
980
952
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
981
953
|
([] if self._drop_input_cols else inputs)
|
982
954
|
+ outputs)
|
955
|
+
|
983
956
|
for prob_func in PROB_FUNCTIONS:
|
984
957
|
if hasattr(self, prob_func):
|
985
958
|
output_cols_prefix: str = f"{prob_func}_"
|