snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NuSVC(BaseTransformer):
57
58
  r"""Nu-Support Vector Classification
58
59
  For more details on this class, see [sklearn.svm.NuSVC]
@@ -60,6 +61,51 @@ class NuSVC(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  nu: float, default=0.5
64
110
  An upper bound on the fraction of margin errors (see :ref:`User Guide
65
111
  <nu_svc>`) and a lower bound of the fraction of support vectors.
@@ -137,35 +183,6 @@ class NuSVC(BaseTransformer):
137
183
  probability estimates. Ignored when `probability` is False.
138
184
  Pass an int for reproducible output across multiple function calls.
139
185
  See :term:`Glossary <random_state>`.
140
-
141
- input_cols: Optional[Union[str, List[str]]]
142
- A string or list of strings representing column names that contain features.
143
- If this parameter is not specified, all columns in the input DataFrame except
144
- the columns specified by label_cols and sample_weight_col parameters are
145
- considered input columns.
146
-
147
- label_cols: Optional[Union[str, List[str]]]
148
- A string or list of strings representing column names that contain labels.
149
- This is a required param for estimators, as there is no way to infer these
150
- columns. If this parameter is not specified, then object is fitted without
151
- labels (like a transformer).
152
-
153
- output_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that will store the
155
- output of predict and transform operations. The length of output_cols must
156
- match the expected number of output columns from the specific estimator or
157
- transformer class used.
158
- If this parameter is not specified, output column names are derived by
159
- adding an OUTPUT_ prefix to the label column names. These inferred output
160
- column names work for estimator's predict() method, but output_cols must
161
- be set explicitly for transformers.
162
-
163
- sample_weight_col: Optional[str]
164
- A string representing the column name containing the sample weights.
165
- This argument is only required when working with weighted datasets.
166
-
167
- drop_input_cols: Optional[bool], default=False
168
- If set, the response of predict(), transform() methods will not contain input columns.
169
186
  """
170
187
 
171
188
  def __init__( # type: ignore[no-untyped-def]
@@ -189,6 +206,7 @@ class NuSVC(BaseTransformer):
189
206
  input_cols: Optional[Union[str, Iterable[str]]] = None,
190
207
  output_cols: Optional[Union[str, Iterable[str]]] = None,
191
208
  label_cols: Optional[Union[str, Iterable[str]]] = None,
209
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
192
210
  drop_input_cols: Optional[bool] = False,
193
211
  sample_weight_col: Optional[str] = None,
194
212
  ) -> None:
@@ -197,9 +215,10 @@ class NuSVC(BaseTransformer):
197
215
  self.set_input_cols(input_cols)
198
216
  self.set_output_cols(output_cols)
199
217
  self.set_label_cols(label_cols)
218
+ self.set_passthrough_cols(passthrough_cols)
200
219
  self.set_drop_input_cols(drop_input_cols)
201
220
  self.set_sample_weight_col(sample_weight_col)
202
- deps = set(SklearnWrapperProvider().dependencies)
221
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
203
222
 
204
223
  self._deps = list(deps)
205
224
 
@@ -222,13 +241,14 @@ class NuSVC(BaseTransformer):
222
241
  args=init_args,
223
242
  klass=sklearn.svm.NuSVC
224
243
  )
225
- self._sklearn_object = sklearn.svm.NuSVC(
244
+ self._sklearn_object: Any = sklearn.svm.NuSVC(
226
245
  **cleaned_up_init_args,
227
246
  )
228
247
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
229
248
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
230
249
  self._snowpark_cols: Optional[List[str]] = self.input_cols
231
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
250
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
251
+ self._autogenerated = True
232
252
 
233
253
  def _get_rand_id(self) -> str:
234
254
  """
@@ -239,24 +259,6 @@ class NuSVC(BaseTransformer):
239
259
  """
240
260
  return str(uuid4()).replace("-", "_").upper()
241
261
 
242
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
243
- """
244
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
245
-
246
- Args:
247
- dataset: Input dataset.
248
- """
249
- if not self.input_cols:
250
- cols = [
251
- c for c in dataset.columns
252
- if c not in self.get_label_cols() and c != self.sample_weight_col
253
- ]
254
- self.set_input_cols(input_cols=cols)
255
-
256
- if not self.output_cols:
257
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
258
- self.set_output_cols(output_cols=cols)
259
-
260
262
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NuSVC":
261
263
  """
262
264
  Input columns setter.
@@ -302,54 +304,48 @@ class NuSVC(BaseTransformer):
302
304
  self
303
305
  """
304
306
  self._infer_input_output_cols(dataset)
305
- if isinstance(dataset, pd.DataFrame):
306
- assert self._sklearn_object is not None # keep mypy happy
307
- self._sklearn_object = self._handlers.fit_pandas(
308
- dataset,
309
- self._sklearn_object,
310
- self.input_cols,
311
- self.label_cols,
312
- self.sample_weight_col
313
- )
314
- elif isinstance(dataset, DataFrame):
315
- self._fit_snowpark(dataset)
316
- else:
317
- raise TypeError(
318
- f"Unexpected dataset type: {type(dataset)}."
319
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
320
- )
307
+ if isinstance(dataset, DataFrame):
308
+ session = dataset._session
309
+ assert session is not None # keep mypy happy
310
+ # Validate that key package version in user workspace are supported in snowflake conda channel
311
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
312
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
313
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
314
+
315
+ # Specify input columns so column pruning will be enforced
316
+ selected_cols = self._get_active_columns()
317
+ if len(selected_cols) > 0:
318
+ dataset = dataset.select(selected_cols)
319
+
320
+ self._snowpark_cols = dataset.select(self.input_cols).columns
321
+
322
+ # If we are already in a stored procedure, no need to kick off another one.
323
+ if SNOWML_SPROC_ENV in os.environ:
324
+ statement_params = telemetry.get_function_usage_statement_params(
325
+ project=_PROJECT,
326
+ subproject=_SUBPROJECT,
327
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
328
+ api_calls=[Session.call],
329
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
330
+ )
331
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
332
+ pd_df.columns = dataset.columns
333
+ dataset = pd_df
334
+
335
+ model_trainer = ModelTrainerBuilder.build(
336
+ estimator=self._sklearn_object,
337
+ dataset=dataset,
338
+ input_cols=self.input_cols,
339
+ label_cols=self.label_cols,
340
+ sample_weight_col=self.sample_weight_col,
341
+ autogenerated=self._autogenerated,
342
+ subproject=_SUBPROJECT
343
+ )
344
+ self._sklearn_object = model_trainer.train()
321
345
  self._is_fitted = True
322
346
  self._get_model_signatures(dataset)
323
347
  return self
324
348
 
325
- def _fit_snowpark(self, dataset: DataFrame) -> None:
326
- session = dataset._session
327
- assert session is not None # keep mypy happy
328
- # Validate that key package version in user workspace are supported in snowflake conda channel
329
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
330
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
331
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
332
-
333
- # Specify input columns so column pruning will be enforced
334
- selected_cols = self._get_active_columns()
335
- if len(selected_cols) > 0:
336
- dataset = dataset.select(selected_cols)
337
-
338
- estimator = self._sklearn_object
339
- assert estimator is not None # Keep mypy happy
340
-
341
- self._snowpark_cols = dataset.select(self.input_cols).columns
342
-
343
- self._sklearn_object = self._handlers.fit_snowpark(
344
- dataset,
345
- session,
346
- estimator,
347
- ["snowflake-snowpark-python"] + self._get_dependencies(),
348
- self.input_cols,
349
- self.label_cols,
350
- self.sample_weight_col,
351
- )
352
-
353
349
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
354
350
  if self._drop_input_cols:
355
351
  return []
@@ -537,11 +533,6 @@ class NuSVC(BaseTransformer):
537
533
  subproject=_SUBPROJECT,
538
534
  custom_tags=dict([("autogen", True)]),
539
535
  )
540
- @telemetry.add_stmt_params_to_df(
541
- project=_PROJECT,
542
- subproject=_SUBPROJECT,
543
- custom_tags=dict([("autogen", True)]),
544
- )
545
536
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
546
537
  """Perform classification on samples in X
547
538
  For more details on this function, see [sklearn.svm.NuSVC.predict]
@@ -595,11 +586,6 @@ class NuSVC(BaseTransformer):
595
586
  subproject=_SUBPROJECT,
596
587
  custom_tags=dict([("autogen", True)]),
597
588
  )
598
- @telemetry.add_stmt_params_to_df(
599
- project=_PROJECT,
600
- subproject=_SUBPROJECT,
601
- custom_tags=dict([("autogen", True)]),
602
- )
603
589
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
604
590
  """Method not supported for this class.
605
591
 
@@ -656,7 +642,8 @@ class NuSVC(BaseTransformer):
656
642
  if False:
657
643
  self.fit(dataset)
658
644
  assert self._sklearn_object is not None
659
- return self._sklearn_object.labels_
645
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
646
+ return labels
660
647
  else:
661
648
  raise NotImplementedError
662
649
 
@@ -692,6 +679,7 @@ class NuSVC(BaseTransformer):
692
679
  output_cols = []
693
680
 
694
681
  # Make sure column names are valid snowflake identifiers.
682
+ assert output_cols is not None # Make MyPy happy
695
683
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
696
684
 
697
685
  return rv
@@ -702,11 +690,6 @@ class NuSVC(BaseTransformer):
702
690
  subproject=_SUBPROJECT,
703
691
  custom_tags=dict([("autogen", True)]),
704
692
  )
705
- @telemetry.add_stmt_params_to_df(
706
- project=_PROJECT,
707
- subproject=_SUBPROJECT,
708
- custom_tags=dict([("autogen", True)]),
709
- )
710
693
  def predict_proba(
711
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
712
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -749,11 +732,6 @@ class NuSVC(BaseTransformer):
749
732
  subproject=_SUBPROJECT,
750
733
  custom_tags=dict([("autogen", True)]),
751
734
  )
752
- @telemetry.add_stmt_params_to_df(
753
- project=_PROJECT,
754
- subproject=_SUBPROJECT,
755
- custom_tags=dict([("autogen", True)]),
756
- )
757
735
  def predict_log_proba(
758
736
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
759
737
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -792,16 +770,6 @@ class NuSVC(BaseTransformer):
792
770
  return output_df
793
771
 
794
772
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
795
- @telemetry.send_api_usage_telemetry(
796
- project=_PROJECT,
797
- subproject=_SUBPROJECT,
798
- custom_tags=dict([("autogen", True)]),
799
- )
800
- @telemetry.add_stmt_params_to_df(
801
- project=_PROJECT,
802
- subproject=_SUBPROJECT,
803
- custom_tags=dict([("autogen", True)]),
804
- )
805
773
  def decision_function(
806
774
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
807
775
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -904,11 +872,6 @@ class NuSVC(BaseTransformer):
904
872
  subproject=_SUBPROJECT,
905
873
  custom_tags=dict([("autogen", True)]),
906
874
  )
907
- @telemetry.add_stmt_params_to_df(
908
- project=_PROJECT,
909
- subproject=_SUBPROJECT,
910
- custom_tags=dict([("autogen", True)]),
911
- )
912
875
  def kneighbors(
913
876
  self,
914
877
  dataset: Union[DataFrame, pd.DataFrame],
@@ -968,18 +931,28 @@ class NuSVC(BaseTransformer):
968
931
  # For classifier, the type of predict is the same as the type of label
969
932
  if self._sklearn_object._estimator_type == 'classifier':
970
933
  # label columns is the desired type for output
971
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
934
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
935
  # rename the output columns
973
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
936
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
937
  self._model_signature_dict["predict"] = ModelSignature(inputs,
975
938
  ([] if self._drop_input_cols else inputs)
976
939
  + outputs)
940
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
941
+ # For outlier models, returns -1 for outliers and 1 for inliers.
942
+ # Clusterer returns int64 cluster labels.
943
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
944
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
945
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
946
+ ([] if self._drop_input_cols else inputs)
947
+ + outputs)
948
+
977
949
  # For regressor, the type of predict is float64
978
950
  elif self._sklearn_object._estimator_type == 'regressor':
979
951
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
980
952
  self._model_signature_dict["predict"] = ModelSignature(inputs,
981
953
  ([] if self._drop_input_cols else inputs)
982
954
  + outputs)
955
+
983
956
  for prob_func in PROB_FUNCTIONS:
984
957
  if hasattr(self, prob_func):
985
958
  output_cols_prefix: str = f"{prob_func}_"