snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class XGBRFRegressor(BaseTransformer):
56
57
  r"""scikit-learn API for XGBoost random forest regression
57
58
  For more details on this class, see [xgboost.XGBRFRegressor]
@@ -60,7 +61,51 @@ class XGBRFRegressor(BaseTransformer):
60
61
  Parameters
61
62
  ----------
62
63
 
63
- n_estimators: int
64
+ input_cols: Optional[Union[str, List[str]]]
65
+ A string or list of strings representing column names that contain features.
66
+ If this parameter is not specified, all columns in the input DataFrame except
67
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
71
+ label_cols: Optional[Union[str, List[str]]]
72
+ A string or list of strings representing column names that contain labels.
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
108
+ n_estimators: int
64
109
  Number of trees in random forest to fit.
65
110
 
66
111
  max_depth: Optional[int]
@@ -267,35 +312,6 @@ class XGBRFRegressor(BaseTransformer):
267
312
  The value of the gradient for each sample point.
268
313
  hess: array_like of shape [n_samples]
269
314
  The value of the second derivative for each sample point
270
-
271
- input_cols: Optional[Union[str, List[str]]]
272
- A string or list of strings representing column names that contain features.
273
- If this parameter is not specified, all columns in the input DataFrame except
274
- the columns specified by label_cols and sample_weight_col parameters are
275
- considered input columns.
276
-
277
- label_cols: Optional[Union[str, List[str]]]
278
- A string or list of strings representing column names that contain labels.
279
- This is a required param for estimators, as there is no way to infer these
280
- columns. If this parameter is not specified, then object is fitted without
281
- labels (like a transformer).
282
-
283
- output_cols: Optional[Union[str, List[str]]]
284
- A string or list of strings representing column names that will store the
285
- output of predict and transform operations. The length of output_cols must
286
- match the expected number of output columns from the specific estimator or
287
- transformer class used.
288
- If this parameter is not specified, output column names are derived by
289
- adding an OUTPUT_ prefix to the label column names. These inferred output
290
- column names work for estimator's predict() method, but output_cols must
291
- be set explicitly for transformers.
292
-
293
- sample_weight_col: Optional[str]
294
- A string representing the column name containing the sample weights.
295
- This argument is only required when working with weighted datasets.
296
-
297
- drop_input_cols: Optional[bool], default=False
298
- If set, the response of predict(), transform() methods will not contain input columns.
299
315
  """
300
316
 
301
317
  def __init__( # type: ignore[no-untyped-def]
@@ -308,6 +324,7 @@ class XGBRFRegressor(BaseTransformer):
308
324
  input_cols: Optional[Union[str, Iterable[str]]] = None,
309
325
  output_cols: Optional[Union[str, Iterable[str]]] = None,
310
326
  label_cols: Optional[Union[str, Iterable[str]]] = None,
327
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
311
328
  drop_input_cols: Optional[bool] = False,
312
329
  sample_weight_col: Optional[str] = None,
313
330
  **kwargs,
@@ -317,9 +334,10 @@ class XGBRFRegressor(BaseTransformer):
317
334
  self.set_input_cols(input_cols)
318
335
  self.set_output_cols(output_cols)
319
336
  self.set_label_cols(label_cols)
337
+ self.set_passthrough_cols(passthrough_cols)
320
338
  self.set_drop_input_cols(drop_input_cols)
321
339
  self.set_sample_weight_col(sample_weight_col)
322
- deps = set(XGBoostWrapperProvider().dependencies)
340
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
323
341
 
324
342
  self._deps = list(deps)
325
343
 
@@ -331,14 +349,15 @@ class XGBRFRegressor(BaseTransformer):
331
349
  args=init_args,
332
350
  klass=xgboost.XGBRFRegressor
333
351
  )
334
- self._sklearn_object = xgboost.XGBRFRegressor(
352
+ self._sklearn_object: Any = xgboost.XGBRFRegressor(
335
353
  **cleaned_up_init_args,
336
354
  **kwargs,
337
355
  )
338
356
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
339
357
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
340
358
  self._snowpark_cols: Optional[List[str]] = self.input_cols
341
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=XGBoostWrapperProvider())
359
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
360
+ self._autogenerated = True
342
361
 
343
362
  def _get_rand_id(self) -> str:
344
363
  """
@@ -349,24 +368,6 @@ class XGBRFRegressor(BaseTransformer):
349
368
  """
350
369
  return str(uuid4()).replace("-", "_").upper()
351
370
 
352
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
353
- """
354
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
355
-
356
- Args:
357
- dataset: Input dataset.
358
- """
359
- if not self.input_cols:
360
- cols = [
361
- c for c in dataset.columns
362
- if c not in self.get_label_cols() and c != self.sample_weight_col
363
- ]
364
- self.set_input_cols(input_cols=cols)
365
-
366
- if not self.output_cols:
367
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
368
- self.set_output_cols(output_cols=cols)
369
-
370
371
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBRFRegressor":
371
372
  """
372
373
  Input columns setter.
@@ -412,54 +413,48 @@ class XGBRFRegressor(BaseTransformer):
412
413
  self
413
414
  """
414
415
  self._infer_input_output_cols(dataset)
415
- if isinstance(dataset, pd.DataFrame):
416
- assert self._sklearn_object is not None # keep mypy happy
417
- self._sklearn_object = self._handlers.fit_pandas(
418
- dataset,
419
- self._sklearn_object,
420
- self.input_cols,
421
- self.label_cols,
422
- self.sample_weight_col
423
- )
424
- elif isinstance(dataset, DataFrame):
425
- self._fit_snowpark(dataset)
426
- else:
427
- raise TypeError(
428
- f"Unexpected dataset type: {type(dataset)}."
429
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
430
- )
416
+ if isinstance(dataset, DataFrame):
417
+ session = dataset._session
418
+ assert session is not None # keep mypy happy
419
+ # Validate that key package version in user workspace are supported in snowflake conda channel
420
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
421
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
422
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
423
+
424
+ # Specify input columns so column pruning will be enforced
425
+ selected_cols = self._get_active_columns()
426
+ if len(selected_cols) > 0:
427
+ dataset = dataset.select(selected_cols)
428
+
429
+ self._snowpark_cols = dataset.select(self.input_cols).columns
430
+
431
+ # If we are already in a stored procedure, no need to kick off another one.
432
+ if SNOWML_SPROC_ENV in os.environ:
433
+ statement_params = telemetry.get_function_usage_statement_params(
434
+ project=_PROJECT,
435
+ subproject=_SUBPROJECT,
436
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFRegressor.__class__.__name__),
437
+ api_calls=[Session.call],
438
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
439
+ )
440
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
441
+ pd_df.columns = dataset.columns
442
+ dataset = pd_df
443
+
444
+ model_trainer = ModelTrainerBuilder.build(
445
+ estimator=self._sklearn_object,
446
+ dataset=dataset,
447
+ input_cols=self.input_cols,
448
+ label_cols=self.label_cols,
449
+ sample_weight_col=self.sample_weight_col,
450
+ autogenerated=self._autogenerated,
451
+ subproject=_SUBPROJECT
452
+ )
453
+ self._sklearn_object = model_trainer.train()
431
454
  self._is_fitted = True
432
455
  self._get_model_signatures(dataset)
433
456
  return self
434
457
 
435
- def _fit_snowpark(self, dataset: DataFrame) -> None:
436
- session = dataset._session
437
- assert session is not None # keep mypy happy
438
- # Validate that key package version in user workspace are supported in snowflake conda channel
439
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
440
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
441
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
442
-
443
- # Specify input columns so column pruning will be enforced
444
- selected_cols = self._get_active_columns()
445
- if len(selected_cols) > 0:
446
- dataset = dataset.select(selected_cols)
447
-
448
- estimator = self._sklearn_object
449
- assert estimator is not None # Keep mypy happy
450
-
451
- self._snowpark_cols = dataset.select(self.input_cols).columns
452
-
453
- self._sklearn_object = self._handlers.fit_snowpark(
454
- dataset,
455
- session,
456
- estimator,
457
- ["snowflake-snowpark-python"] + self._get_dependencies(),
458
- self.input_cols,
459
- self.label_cols,
460
- self.sample_weight_col,
461
- )
462
-
463
458
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
464
459
  if self._drop_input_cols:
465
460
  return []
@@ -647,11 +642,6 @@ class XGBRFRegressor(BaseTransformer):
647
642
  subproject=_SUBPROJECT,
648
643
  custom_tags=dict([("autogen", True)]),
649
644
  )
650
- @telemetry.add_stmt_params_to_df(
651
- project=_PROJECT,
652
- subproject=_SUBPROJECT,
653
- custom_tags=dict([("autogen", True)]),
654
- )
655
645
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
656
646
  """Predict with `X`
657
647
  For more details on this function, see [xgboost.XGBRFRegressor.predict]
@@ -705,11 +695,6 @@ class XGBRFRegressor(BaseTransformer):
705
695
  subproject=_SUBPROJECT,
706
696
  custom_tags=dict([("autogen", True)]),
707
697
  )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
698
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
714
699
  """Method not supported for this class.
715
700
 
@@ -766,7 +751,8 @@ class XGBRFRegressor(BaseTransformer):
766
751
  if False:
767
752
  self.fit(dataset)
768
753
  assert self._sklearn_object is not None
769
- return self._sklearn_object.labels_
754
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
755
+ return labels
770
756
  else:
771
757
  raise NotImplementedError
772
758
 
@@ -802,6 +788,7 @@ class XGBRFRegressor(BaseTransformer):
802
788
  output_cols = []
803
789
 
804
790
  # Make sure column names are valid snowflake identifiers.
791
+ assert output_cols is not None # Make MyPy happy
805
792
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
806
793
 
807
794
  return rv
@@ -812,11 +799,6 @@ class XGBRFRegressor(BaseTransformer):
812
799
  subproject=_SUBPROJECT,
813
800
  custom_tags=dict([("autogen", True)]),
814
801
  )
815
- @telemetry.add_stmt_params_to_df(
816
- project=_PROJECT,
817
- subproject=_SUBPROJECT,
818
- custom_tags=dict([("autogen", True)]),
819
- )
820
802
  def predict_proba(
821
803
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
822
804
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -857,11 +839,6 @@ class XGBRFRegressor(BaseTransformer):
857
839
  subproject=_SUBPROJECT,
858
840
  custom_tags=dict([("autogen", True)]),
859
841
  )
860
- @telemetry.add_stmt_params_to_df(
861
- project=_PROJECT,
862
- subproject=_SUBPROJECT,
863
- custom_tags=dict([("autogen", True)]),
864
- )
865
842
  def predict_log_proba(
866
843
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
867
844
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -898,16 +875,6 @@ class XGBRFRegressor(BaseTransformer):
898
875
  return output_df
899
876
 
900
877
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
901
- @telemetry.send_api_usage_telemetry(
902
- project=_PROJECT,
903
- subproject=_SUBPROJECT,
904
- custom_tags=dict([("autogen", True)]),
905
- )
906
- @telemetry.add_stmt_params_to_df(
907
- project=_PROJECT,
908
- subproject=_SUBPROJECT,
909
- custom_tags=dict([("autogen", True)]),
910
- )
911
878
  def decision_function(
912
879
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
913
880
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -1008,11 +975,6 @@ class XGBRFRegressor(BaseTransformer):
1008
975
  subproject=_SUBPROJECT,
1009
976
  custom_tags=dict([("autogen", True)]),
1010
977
  )
1011
- @telemetry.add_stmt_params_to_df(
1012
- project=_PROJECT,
1013
- subproject=_SUBPROJECT,
1014
- custom_tags=dict([("autogen", True)]),
1015
- )
1016
978
  def kneighbors(
1017
979
  self,
1018
980
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1072,18 +1034,28 @@ class XGBRFRegressor(BaseTransformer):
1072
1034
  # For classifier, the type of predict is the same as the type of label
1073
1035
  if self._sklearn_object._estimator_type == 'classifier':
1074
1036
  # label columns is the desired type for output
1075
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1037
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1076
1038
  # rename the output columns
1077
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1039
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1040
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
+ ([] if self._drop_input_cols else inputs)
1042
+ + outputs)
1043
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1044
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1045
+ # Clusterer returns int64 cluster labels.
1046
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1047
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1078
1048
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1079
1049
  ([] if self._drop_input_cols else inputs)
1080
1050
  + outputs)
1051
+
1081
1052
  # For regressor, the type of predict is float64
1082
1053
  elif self._sklearn_object._estimator_type == 'regressor':
1083
1054
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1084
1055
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1085
1056
  ([] if self._drop_input_cols else inputs)
1086
1057
  + outputs)
1058
+
1087
1059
  for prob_func in PROB_FUNCTIONS:
1088
1060
  if hasattr(self, prob_func):
1089
1061
  output_cols_prefix: str = f"{prob_func}_"
@@ -24,6 +24,7 @@ from snowflake.ml._internal.utils import (
24
24
  formatting,
25
25
  identifier,
26
26
  query_result_checker,
27
+ spcs_attribution_utils,
27
28
  table_manager,
28
29
  uri,
29
30
  )
@@ -1767,6 +1768,7 @@ class ModelRegistry:
1767
1768
  service_name = identifier.get_schema_level_object_identifier(
1768
1769
  self._name, self._schema, f"service_{deployment['MODEL_ID']}"
1769
1770
  )
1771
+ spcs_attribution_utils.record_service_end(self._session, service_name)
1770
1772
  query_result_checker.SqlResultValidator(
1771
1773
  self._session,
1772
1774
  f"DROP SERVICE IF EXISTS {service_name}",
@@ -0,0 +1,215 @@
1
+ from types import ModuleType
2
+ from typing import Dict, List, Optional
3
+
4
+ from snowflake.ml._internal import telemetry
5
+ from snowflake.ml._internal.utils import sql_identifier
6
+ from snowflake.ml.model import model_signature, type_hints as model_types
7
+ from snowflake.ml.model._client.model import model_impl, model_version_impl
8
+ from snowflake.ml.model._client.ops import model_ops
9
+ from snowflake.ml.model._model_composer import model_composer
10
+ from snowflake.snowpark import session
11
+
12
+ _TELEMETRY_PROJECT = "MLOps"
13
+ _MODEL_TELEMETRY_SUBPROJECT = "ModelManagement"
14
+
15
+
16
+ class Registry:
17
+ def __init__(
18
+ self,
19
+ session: session.Session,
20
+ *,
21
+ database_name: Optional[str] = None,
22
+ schema_name: Optional[str] = None,
23
+ ) -> None:
24
+ if database_name:
25
+ self._database_name = sql_identifier.SqlIdentifier(database_name)
26
+ else:
27
+ session_db = session.get_current_database()
28
+ if session_db:
29
+ self._database_name = sql_identifier.SqlIdentifier(session_db)
30
+ else:
31
+ raise ValueError("You need to provide a database to use registry.")
32
+
33
+ if schema_name:
34
+ self._schema_name = sql_identifier.SqlIdentifier(schema_name)
35
+ elif database_name:
36
+ self._schema_name = sql_identifier.SqlIdentifier("PUBLIC")
37
+ else:
38
+ session_schema = session.get_current_schema()
39
+ self._schema_name = (
40
+ sql_identifier.SqlIdentifier(session_schema)
41
+ if session_schema
42
+ else sql_identifier.SqlIdentifier("PUBLIC")
43
+ )
44
+
45
+ self._model_ops = model_ops.ModelOperator(
46
+ session, database_name=self._database_name, schema_name=self._schema_name
47
+ )
48
+
49
+ @property
50
+ def location(self) -> str:
51
+ return ".".join([self._database_name.identifier(), self._schema_name.identifier()])
52
+
53
+ @telemetry.send_api_usage_telemetry(
54
+ project=_TELEMETRY_PROJECT,
55
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
56
+ )
57
+ def log_model(
58
+ self,
59
+ model: model_types.SupportedModelType,
60
+ *,
61
+ model_name: str,
62
+ version_name: str,
63
+ conda_dependencies: Optional[List[str]] = None,
64
+ pip_requirements: Optional[List[str]] = None,
65
+ python_version: Optional[str] = None,
66
+ signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
67
+ sample_input_data: Optional[model_types.SupportedDataType] = None,
68
+ code_paths: Optional[List[str]] = None,
69
+ ext_modules: Optional[List[ModuleType]] = None,
70
+ options: Optional[model_types.ModelSaveOption] = None,
71
+ ) -> model_version_impl.ModelVersion:
72
+ """Log a model.
73
+
74
+ Args:
75
+ model: Model Python object
76
+ model_name: A string as name.
77
+ version_name: A string as version. model_name and version_name combination must be unique.
78
+ signatures: Model data signatures for inputs and output for every target methods. If it is None,
79
+ sample_input_data would be used to infer the signatures for those models that cannot automatically
80
+ infer the signature. If not None, sample_input should not be specified. Defaults to None.
81
+ sample_input_data: Sample input data to infer the model signatures from. If it is None, signatures must be
82
+ specified if the model cannot automatically infer the signature. If not None, signatures should not be
83
+ specified. Defaults to None.
84
+ conda_dependencies: List of Conda package specs. Use "[channel::]package [operator version]" syntax to
85
+ specify a dependency. It is a recommended way to specify your dependencies using conda. When channel is
86
+ not specified, Snowflake Anaconda Channel will be used.
87
+ pip_requirements: List of Pip package specs.
88
+ python_version: A string of python version where model is run. Used for user override. If specified as None,
89
+ current version would be captured. Defaults to None.
90
+ code_paths: Directory of code to import.
91
+ ext_modules: External modules that user might want to get pickled with model object. Defaults to None.
92
+ options: Model specific kwargs.
93
+
94
+ Returns:
95
+ A ModelVersion object corresponding to the model just get logged.
96
+ """
97
+
98
+ statement_params = telemetry.get_statement_params(
99
+ project=_TELEMETRY_PROJECT,
100
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
101
+ )
102
+ model_name_id = sql_identifier.SqlIdentifier(model_name)
103
+
104
+ version_name_id = sql_identifier.SqlIdentifier(version_name)
105
+
106
+ stage_path = self._model_ops.prepare_model_stage_path(
107
+ statement_params=statement_params,
108
+ )
109
+
110
+ mc = model_composer.ModelComposer(self._model_ops._session, stage_path=stage_path)
111
+ mc.save(
112
+ name=model_name_id.resolved(),
113
+ model=model,
114
+ signatures=signatures,
115
+ sample_input=sample_input_data,
116
+ conda_dependencies=conda_dependencies,
117
+ pip_requirements=pip_requirements,
118
+ python_version=python_version,
119
+ code_paths=code_paths,
120
+ ext_modules=ext_modules,
121
+ options=options,
122
+ )
123
+ self._model_ops.create_from_stage(
124
+ composed_model=mc,
125
+ model_name=model_name_id,
126
+ version_name=version_name_id,
127
+ statement_params=statement_params,
128
+ )
129
+
130
+ return model_version_impl.ModelVersion._ref(
131
+ self._model_ops,
132
+ model_name=model_name_id,
133
+ version_name=version_name_id,
134
+ )
135
+
136
+ @telemetry.send_api_usage_telemetry(
137
+ project=_TELEMETRY_PROJECT,
138
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
139
+ )
140
+ def get_model(self, model_name: str) -> model_impl.Model:
141
+ """Get the model object.
142
+
143
+ Args:
144
+ model_name: The model name.
145
+
146
+ Raises:
147
+ ValueError: Raised when the model requested does not exist.
148
+
149
+ Returns:
150
+ The model object.
151
+ """
152
+ model_name_id = sql_identifier.SqlIdentifier(model_name)
153
+
154
+ statement_params = telemetry.get_statement_params(
155
+ project=_TELEMETRY_PROJECT,
156
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
157
+ )
158
+ if self._model_ops.validate_existence(
159
+ model_name=model_name_id,
160
+ statement_params=statement_params,
161
+ ):
162
+ return model_impl.Model._ref(
163
+ self._model_ops,
164
+ model_name=model_name_id,
165
+ )
166
+ else:
167
+ raise ValueError(f"Unable to find model {model_name}")
168
+
169
+ @telemetry.send_api_usage_telemetry(
170
+ project=_TELEMETRY_PROJECT,
171
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
172
+ )
173
+ def list_models(self) -> List[model_impl.Model]:
174
+ """List all models in the schema where the registry is opened.
175
+
176
+ Returns:
177
+ A List of Model= object representing all models in the schema where the registry is opened.
178
+ """
179
+ statement_params = telemetry.get_statement_params(
180
+ project=_TELEMETRY_PROJECT,
181
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
182
+ )
183
+ model_names = self._model_ops.list_models_or_versions(
184
+ statement_params=statement_params,
185
+ )
186
+ return [
187
+ model_impl.Model._ref(
188
+ self._model_ops,
189
+ model_name=model_name,
190
+ )
191
+ for model_name in model_names
192
+ ]
193
+
194
+ @telemetry.send_api_usage_telemetry(
195
+ project=_TELEMETRY_PROJECT,
196
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
197
+ )
198
+ def delete_model(self, model_name: str) -> None:
199
+ """Delete the model.
200
+
201
+ Args:
202
+ model_name: The model name, can be fully qualified one.
203
+ If not, use database name and schema name of the registry.
204
+ """
205
+ model_name_id = sql_identifier.SqlIdentifier(model_name)
206
+
207
+ statement_params = telemetry.get_statement_params(
208
+ project=_TELEMETRY_PROJECT,
209
+ subproject=_MODEL_TELEMETRY_SUBPROJECT,
210
+ )
211
+
212
+ self._model_ops.delete_model_or_version(
213
+ model_name=model_name_id,
214
+ statement_params=statement_params,
215
+ )
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.1.0"
1
+ VERSION="1.1.2"