snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRFRegressor(BaseTransformer):
|
56
57
|
r"""scikit-learn API for XGBoost random forest regression
|
57
58
|
For more details on this class, see [xgboost.XGBRFRegressor]
|
@@ -60,7 +61,51 @@ class XGBRFRegressor(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of trees in random forest to fit.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,35 +312,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
275
|
-
considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
drop_input_cols: Optional[bool], default=False
|
298
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
299
315
|
"""
|
300
316
|
|
301
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -308,6 +324,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
308
324
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
309
325
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
310
326
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
327
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
311
328
|
drop_input_cols: Optional[bool] = False,
|
312
329
|
sample_weight_col: Optional[str] = None,
|
313
330
|
**kwargs,
|
@@ -317,9 +334,10 @@ class XGBRFRegressor(BaseTransformer):
|
|
317
334
|
self.set_input_cols(input_cols)
|
318
335
|
self.set_output_cols(output_cols)
|
319
336
|
self.set_label_cols(label_cols)
|
337
|
+
self.set_passthrough_cols(passthrough_cols)
|
320
338
|
self.set_drop_input_cols(drop_input_cols)
|
321
339
|
self.set_sample_weight_col(sample_weight_col)
|
322
|
-
deps = set(
|
340
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
323
341
|
|
324
342
|
self._deps = list(deps)
|
325
343
|
|
@@ -331,14 +349,15 @@ class XGBRFRegressor(BaseTransformer):
|
|
331
349
|
args=init_args,
|
332
350
|
klass=xgboost.XGBRFRegressor
|
333
351
|
)
|
334
|
-
self._sklearn_object = xgboost.XGBRFRegressor(
|
352
|
+
self._sklearn_object: Any = xgboost.XGBRFRegressor(
|
335
353
|
**cleaned_up_init_args,
|
336
354
|
**kwargs,
|
337
355
|
)
|
338
356
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
339
357
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
340
358
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
341
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
359
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
360
|
+
self._autogenerated = True
|
342
361
|
|
343
362
|
def _get_rand_id(self) -> str:
|
344
363
|
"""
|
@@ -349,24 +368,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
349
368
|
"""
|
350
369
|
return str(uuid4()).replace("-", "_").upper()
|
351
370
|
|
352
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
353
|
-
"""
|
354
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
355
|
-
|
356
|
-
Args:
|
357
|
-
dataset: Input dataset.
|
358
|
-
"""
|
359
|
-
if not self.input_cols:
|
360
|
-
cols = [
|
361
|
-
c for c in dataset.columns
|
362
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
363
|
-
]
|
364
|
-
self.set_input_cols(input_cols=cols)
|
365
|
-
|
366
|
-
if not self.output_cols:
|
367
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
368
|
-
self.set_output_cols(output_cols=cols)
|
369
|
-
|
370
371
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBRFRegressor":
|
371
372
|
"""
|
372
373
|
Input columns setter.
|
@@ -412,54 +413,48 @@ class XGBRFRegressor(BaseTransformer):
|
|
412
413
|
self
|
413
414
|
"""
|
414
415
|
self._infer_input_output_cols(dataset)
|
415
|
-
if isinstance(dataset,
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
self.
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
416
|
+
if isinstance(dataset, DataFrame):
|
417
|
+
session = dataset._session
|
418
|
+
assert session is not None # keep mypy happy
|
419
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
420
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
421
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
422
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
423
|
+
|
424
|
+
# Specify input columns so column pruning will be enforced
|
425
|
+
selected_cols = self._get_active_columns()
|
426
|
+
if len(selected_cols) > 0:
|
427
|
+
dataset = dataset.select(selected_cols)
|
428
|
+
|
429
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
430
|
+
|
431
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
432
|
+
if SNOWML_SPROC_ENV in os.environ:
|
433
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
434
|
+
project=_PROJECT,
|
435
|
+
subproject=_SUBPROJECT,
|
436
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFRegressor.__class__.__name__),
|
437
|
+
api_calls=[Session.call],
|
438
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
439
|
+
)
|
440
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
441
|
+
pd_df.columns = dataset.columns
|
442
|
+
dataset = pd_df
|
443
|
+
|
444
|
+
model_trainer = ModelTrainerBuilder.build(
|
445
|
+
estimator=self._sklearn_object,
|
446
|
+
dataset=dataset,
|
447
|
+
input_cols=self.input_cols,
|
448
|
+
label_cols=self.label_cols,
|
449
|
+
sample_weight_col=self.sample_weight_col,
|
450
|
+
autogenerated=self._autogenerated,
|
451
|
+
subproject=_SUBPROJECT
|
452
|
+
)
|
453
|
+
self._sklearn_object = model_trainer.train()
|
431
454
|
self._is_fitted = True
|
432
455
|
self._get_model_signatures(dataset)
|
433
456
|
return self
|
434
457
|
|
435
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
436
|
-
session = dataset._session
|
437
|
-
assert session is not None # keep mypy happy
|
438
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
439
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
440
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
441
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
442
|
-
|
443
|
-
# Specify input columns so column pruning will be enforced
|
444
|
-
selected_cols = self._get_active_columns()
|
445
|
-
if len(selected_cols) > 0:
|
446
|
-
dataset = dataset.select(selected_cols)
|
447
|
-
|
448
|
-
estimator = self._sklearn_object
|
449
|
-
assert estimator is not None # Keep mypy happy
|
450
|
-
|
451
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
452
|
-
|
453
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
454
|
-
dataset,
|
455
|
-
session,
|
456
|
-
estimator,
|
457
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
458
|
-
self.input_cols,
|
459
|
-
self.label_cols,
|
460
|
-
self.sample_weight_col,
|
461
|
-
)
|
462
|
-
|
463
458
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
464
459
|
if self._drop_input_cols:
|
465
460
|
return []
|
@@ -647,11 +642,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
647
642
|
subproject=_SUBPROJECT,
|
648
643
|
custom_tags=dict([("autogen", True)]),
|
649
644
|
)
|
650
|
-
@telemetry.add_stmt_params_to_df(
|
651
|
-
project=_PROJECT,
|
652
|
-
subproject=_SUBPROJECT,
|
653
|
-
custom_tags=dict([("autogen", True)]),
|
654
|
-
)
|
655
645
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
656
646
|
"""Predict with `X`
|
657
647
|
For more details on this function, see [xgboost.XGBRFRegressor.predict]
|
@@ -705,11 +695,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
705
695
|
subproject=_SUBPROJECT,
|
706
696
|
custom_tags=dict([("autogen", True)]),
|
707
697
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
698
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
714
699
|
"""Method not supported for this class.
|
715
700
|
|
@@ -766,7 +751,8 @@ class XGBRFRegressor(BaseTransformer):
|
|
766
751
|
if False:
|
767
752
|
self.fit(dataset)
|
768
753
|
assert self._sklearn_object is not None
|
769
|
-
|
754
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
755
|
+
return labels
|
770
756
|
else:
|
771
757
|
raise NotImplementedError
|
772
758
|
|
@@ -802,6 +788,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
802
788
|
output_cols = []
|
803
789
|
|
804
790
|
# Make sure column names are valid snowflake identifiers.
|
791
|
+
assert output_cols is not None # Make MyPy happy
|
805
792
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
806
793
|
|
807
794
|
return rv
|
@@ -812,11 +799,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
812
799
|
subproject=_SUBPROJECT,
|
813
800
|
custom_tags=dict([("autogen", True)]),
|
814
801
|
)
|
815
|
-
@telemetry.add_stmt_params_to_df(
|
816
|
-
project=_PROJECT,
|
817
|
-
subproject=_SUBPROJECT,
|
818
|
-
custom_tags=dict([("autogen", True)]),
|
819
|
-
)
|
820
802
|
def predict_proba(
|
821
803
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
822
804
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -857,11 +839,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
857
839
|
subproject=_SUBPROJECT,
|
858
840
|
custom_tags=dict([("autogen", True)]),
|
859
841
|
)
|
860
|
-
@telemetry.add_stmt_params_to_df(
|
861
|
-
project=_PROJECT,
|
862
|
-
subproject=_SUBPROJECT,
|
863
|
-
custom_tags=dict([("autogen", True)]),
|
864
|
-
)
|
865
842
|
def predict_log_proba(
|
866
843
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
867
844
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -898,16 +875,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
898
875
|
return output_df
|
899
876
|
|
900
877
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
901
|
-
@telemetry.send_api_usage_telemetry(
|
902
|
-
project=_PROJECT,
|
903
|
-
subproject=_SUBPROJECT,
|
904
|
-
custom_tags=dict([("autogen", True)]),
|
905
|
-
)
|
906
|
-
@telemetry.add_stmt_params_to_df(
|
907
|
-
project=_PROJECT,
|
908
|
-
subproject=_SUBPROJECT,
|
909
|
-
custom_tags=dict([("autogen", True)]),
|
910
|
-
)
|
911
878
|
def decision_function(
|
912
879
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
913
880
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -1008,11 +975,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
1008
975
|
subproject=_SUBPROJECT,
|
1009
976
|
custom_tags=dict([("autogen", True)]),
|
1010
977
|
)
|
1011
|
-
@telemetry.add_stmt_params_to_df(
|
1012
|
-
project=_PROJECT,
|
1013
|
-
subproject=_SUBPROJECT,
|
1014
|
-
custom_tags=dict([("autogen", True)]),
|
1015
|
-
)
|
1016
978
|
def kneighbors(
|
1017
979
|
self,
|
1018
980
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1072,18 +1034,28 @@ class XGBRFRegressor(BaseTransformer):
|
|
1072
1034
|
# For classifier, the type of predict is the same as the type of label
|
1073
1035
|
if self._sklearn_object._estimator_type == 'classifier':
|
1074
1036
|
# label columns is the desired type for output
|
1075
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1037
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1076
1038
|
# rename the output columns
|
1077
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1039
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1040
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1041
|
+
([] if self._drop_input_cols else inputs)
|
1042
|
+
+ outputs)
|
1043
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1044
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1045
|
+
# Clusterer returns int64 cluster labels.
|
1046
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1047
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1078
1048
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1079
1049
|
([] if self._drop_input_cols else inputs)
|
1080
1050
|
+ outputs)
|
1051
|
+
|
1081
1052
|
# For regressor, the type of predict is float64
|
1082
1053
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1083
1054
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1084
1055
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1085
1056
|
([] if self._drop_input_cols else inputs)
|
1086
1057
|
+ outputs)
|
1058
|
+
|
1087
1059
|
for prob_func in PROB_FUNCTIONS:
|
1088
1060
|
if hasattr(self, prob_func):
|
1089
1061
|
output_cols_prefix: str = f"{prob_func}_"
|
@@ -24,6 +24,7 @@ from snowflake.ml._internal.utils import (
|
|
24
24
|
formatting,
|
25
25
|
identifier,
|
26
26
|
query_result_checker,
|
27
|
+
spcs_attribution_utils,
|
27
28
|
table_manager,
|
28
29
|
uri,
|
29
30
|
)
|
@@ -1767,6 +1768,7 @@ class ModelRegistry:
|
|
1767
1768
|
service_name = identifier.get_schema_level_object_identifier(
|
1768
1769
|
self._name, self._schema, f"service_{deployment['MODEL_ID']}"
|
1769
1770
|
)
|
1771
|
+
spcs_attribution_utils.record_service_end(self._session, service_name)
|
1770
1772
|
query_result_checker.SqlResultValidator(
|
1771
1773
|
self._session,
|
1772
1774
|
f"DROP SERVICE IF EXISTS {service_name}",
|
@@ -0,0 +1,215 @@
|
|
1
|
+
from types import ModuleType
|
2
|
+
from typing import Dict, List, Optional
|
3
|
+
|
4
|
+
from snowflake.ml._internal import telemetry
|
5
|
+
from snowflake.ml._internal.utils import sql_identifier
|
6
|
+
from snowflake.ml.model import model_signature, type_hints as model_types
|
7
|
+
from snowflake.ml.model._client.model import model_impl, model_version_impl
|
8
|
+
from snowflake.ml.model._client.ops import model_ops
|
9
|
+
from snowflake.ml.model._model_composer import model_composer
|
10
|
+
from snowflake.snowpark import session
|
11
|
+
|
12
|
+
_TELEMETRY_PROJECT = "MLOps"
|
13
|
+
_MODEL_TELEMETRY_SUBPROJECT = "ModelManagement"
|
14
|
+
|
15
|
+
|
16
|
+
class Registry:
|
17
|
+
def __init__(
|
18
|
+
self,
|
19
|
+
session: session.Session,
|
20
|
+
*,
|
21
|
+
database_name: Optional[str] = None,
|
22
|
+
schema_name: Optional[str] = None,
|
23
|
+
) -> None:
|
24
|
+
if database_name:
|
25
|
+
self._database_name = sql_identifier.SqlIdentifier(database_name)
|
26
|
+
else:
|
27
|
+
session_db = session.get_current_database()
|
28
|
+
if session_db:
|
29
|
+
self._database_name = sql_identifier.SqlIdentifier(session_db)
|
30
|
+
else:
|
31
|
+
raise ValueError("You need to provide a database to use registry.")
|
32
|
+
|
33
|
+
if schema_name:
|
34
|
+
self._schema_name = sql_identifier.SqlIdentifier(schema_name)
|
35
|
+
elif database_name:
|
36
|
+
self._schema_name = sql_identifier.SqlIdentifier("PUBLIC")
|
37
|
+
else:
|
38
|
+
session_schema = session.get_current_schema()
|
39
|
+
self._schema_name = (
|
40
|
+
sql_identifier.SqlIdentifier(session_schema)
|
41
|
+
if session_schema
|
42
|
+
else sql_identifier.SqlIdentifier("PUBLIC")
|
43
|
+
)
|
44
|
+
|
45
|
+
self._model_ops = model_ops.ModelOperator(
|
46
|
+
session, database_name=self._database_name, schema_name=self._schema_name
|
47
|
+
)
|
48
|
+
|
49
|
+
@property
|
50
|
+
def location(self) -> str:
|
51
|
+
return ".".join([self._database_name.identifier(), self._schema_name.identifier()])
|
52
|
+
|
53
|
+
@telemetry.send_api_usage_telemetry(
|
54
|
+
project=_TELEMETRY_PROJECT,
|
55
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
56
|
+
)
|
57
|
+
def log_model(
|
58
|
+
self,
|
59
|
+
model: model_types.SupportedModelType,
|
60
|
+
*,
|
61
|
+
model_name: str,
|
62
|
+
version_name: str,
|
63
|
+
conda_dependencies: Optional[List[str]] = None,
|
64
|
+
pip_requirements: Optional[List[str]] = None,
|
65
|
+
python_version: Optional[str] = None,
|
66
|
+
signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
|
67
|
+
sample_input_data: Optional[model_types.SupportedDataType] = None,
|
68
|
+
code_paths: Optional[List[str]] = None,
|
69
|
+
ext_modules: Optional[List[ModuleType]] = None,
|
70
|
+
options: Optional[model_types.ModelSaveOption] = None,
|
71
|
+
) -> model_version_impl.ModelVersion:
|
72
|
+
"""Log a model.
|
73
|
+
|
74
|
+
Args:
|
75
|
+
model: Model Python object
|
76
|
+
model_name: A string as name.
|
77
|
+
version_name: A string as version. model_name and version_name combination must be unique.
|
78
|
+
signatures: Model data signatures for inputs and output for every target methods. If it is None,
|
79
|
+
sample_input_data would be used to infer the signatures for those models that cannot automatically
|
80
|
+
infer the signature. If not None, sample_input should not be specified. Defaults to None.
|
81
|
+
sample_input_data: Sample input data to infer the model signatures from. If it is None, signatures must be
|
82
|
+
specified if the model cannot automatically infer the signature. If not None, signatures should not be
|
83
|
+
specified. Defaults to None.
|
84
|
+
conda_dependencies: List of Conda package specs. Use "[channel::]package [operator version]" syntax to
|
85
|
+
specify a dependency. It is a recommended way to specify your dependencies using conda. When channel is
|
86
|
+
not specified, Snowflake Anaconda Channel will be used.
|
87
|
+
pip_requirements: List of Pip package specs.
|
88
|
+
python_version: A string of python version where model is run. Used for user override. If specified as None,
|
89
|
+
current version would be captured. Defaults to None.
|
90
|
+
code_paths: Directory of code to import.
|
91
|
+
ext_modules: External modules that user might want to get pickled with model object. Defaults to None.
|
92
|
+
options: Model specific kwargs.
|
93
|
+
|
94
|
+
Returns:
|
95
|
+
A ModelVersion object corresponding to the model just get logged.
|
96
|
+
"""
|
97
|
+
|
98
|
+
statement_params = telemetry.get_statement_params(
|
99
|
+
project=_TELEMETRY_PROJECT,
|
100
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
101
|
+
)
|
102
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
103
|
+
|
104
|
+
version_name_id = sql_identifier.SqlIdentifier(version_name)
|
105
|
+
|
106
|
+
stage_path = self._model_ops.prepare_model_stage_path(
|
107
|
+
statement_params=statement_params,
|
108
|
+
)
|
109
|
+
|
110
|
+
mc = model_composer.ModelComposer(self._model_ops._session, stage_path=stage_path)
|
111
|
+
mc.save(
|
112
|
+
name=model_name_id.resolved(),
|
113
|
+
model=model,
|
114
|
+
signatures=signatures,
|
115
|
+
sample_input=sample_input_data,
|
116
|
+
conda_dependencies=conda_dependencies,
|
117
|
+
pip_requirements=pip_requirements,
|
118
|
+
python_version=python_version,
|
119
|
+
code_paths=code_paths,
|
120
|
+
ext_modules=ext_modules,
|
121
|
+
options=options,
|
122
|
+
)
|
123
|
+
self._model_ops.create_from_stage(
|
124
|
+
composed_model=mc,
|
125
|
+
model_name=model_name_id,
|
126
|
+
version_name=version_name_id,
|
127
|
+
statement_params=statement_params,
|
128
|
+
)
|
129
|
+
|
130
|
+
return model_version_impl.ModelVersion._ref(
|
131
|
+
self._model_ops,
|
132
|
+
model_name=model_name_id,
|
133
|
+
version_name=version_name_id,
|
134
|
+
)
|
135
|
+
|
136
|
+
@telemetry.send_api_usage_telemetry(
|
137
|
+
project=_TELEMETRY_PROJECT,
|
138
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
139
|
+
)
|
140
|
+
def get_model(self, model_name: str) -> model_impl.Model:
|
141
|
+
"""Get the model object.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
model_name: The model name.
|
145
|
+
|
146
|
+
Raises:
|
147
|
+
ValueError: Raised when the model requested does not exist.
|
148
|
+
|
149
|
+
Returns:
|
150
|
+
The model object.
|
151
|
+
"""
|
152
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
153
|
+
|
154
|
+
statement_params = telemetry.get_statement_params(
|
155
|
+
project=_TELEMETRY_PROJECT,
|
156
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
157
|
+
)
|
158
|
+
if self._model_ops.validate_existence(
|
159
|
+
model_name=model_name_id,
|
160
|
+
statement_params=statement_params,
|
161
|
+
):
|
162
|
+
return model_impl.Model._ref(
|
163
|
+
self._model_ops,
|
164
|
+
model_name=model_name_id,
|
165
|
+
)
|
166
|
+
else:
|
167
|
+
raise ValueError(f"Unable to find model {model_name}")
|
168
|
+
|
169
|
+
@telemetry.send_api_usage_telemetry(
|
170
|
+
project=_TELEMETRY_PROJECT,
|
171
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
172
|
+
)
|
173
|
+
def list_models(self) -> List[model_impl.Model]:
|
174
|
+
"""List all models in the schema where the registry is opened.
|
175
|
+
|
176
|
+
Returns:
|
177
|
+
A List of Model= object representing all models in the schema where the registry is opened.
|
178
|
+
"""
|
179
|
+
statement_params = telemetry.get_statement_params(
|
180
|
+
project=_TELEMETRY_PROJECT,
|
181
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
182
|
+
)
|
183
|
+
model_names = self._model_ops.list_models_or_versions(
|
184
|
+
statement_params=statement_params,
|
185
|
+
)
|
186
|
+
return [
|
187
|
+
model_impl.Model._ref(
|
188
|
+
self._model_ops,
|
189
|
+
model_name=model_name,
|
190
|
+
)
|
191
|
+
for model_name in model_names
|
192
|
+
]
|
193
|
+
|
194
|
+
@telemetry.send_api_usage_telemetry(
|
195
|
+
project=_TELEMETRY_PROJECT,
|
196
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
197
|
+
)
|
198
|
+
def delete_model(self, model_name: str) -> None:
|
199
|
+
"""Delete the model.
|
200
|
+
|
201
|
+
Args:
|
202
|
+
model_name: The model name, can be fully qualified one.
|
203
|
+
If not, use database name and schema name of the registry.
|
204
|
+
"""
|
205
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
206
|
+
|
207
|
+
statement_params = telemetry.get_statement_params(
|
208
|
+
project=_TELEMETRY_PROJECT,
|
209
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
210
|
+
)
|
211
|
+
|
212
|
+
self._model_ops.delete_model_or_version(
|
213
|
+
model_name=model_name_id,
|
214
|
+
statement_params=statement_params,
|
215
|
+
)
|
snowflake/ml/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION="1.1.
|
1
|
+
VERSION="1.1.2"
|